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Abstract

Background: Recent studies on the medical treatment of Parkinson’s disease (PD) led to the introduction of the so
called Deep Brain Stimulation (DBS) technique. This particular therapy allows to contrast actively the pathological
activity of various Deep Brain structures, responsible for the well known PD symptoms. This technique, frequently
joined to dopaminergic drugs administration, replaces the surgical interventions implemented to contrast the
activity of specific brain nuclei, called Basal Ganglia (BG). This clinical protocol gave the possibility to analyse and
inspect signals measured from the electrodes implanted into the deep brain regions. The analysis of these signals
led to the possibility to study the PD as a specific case of dynamical synchronization in biological neural networks,
with the advantage to apply the theoretical analysis developed in such scientific field to find efficient treatments to
face with this important disease. Experimental results in fact show that the PD neurological diseases are
characterized by a pathological signal synchronization in BG. Parkinsonian tremor, for example, is ascribed to be
caused by neuron populations of the Thalamic and Striatal structures that undergo an abnormal synchronization.
On the contrary, in normal conditions, the activity of the same neuron populations do not appear to be correlated
and synchronized.

Results: To study in details the effect of the stimulation signal on a pathological neural medium, efficient models
of these neural structures were built, which are able to show, without any external input, the intrinsic properties of
a pathological neural tissue, mimicking the BG synchronized dynamics.

We start considering a model already introduced in the literature to investigate the effects of electrical stimulation
on pathologically synchronized clusters of neurons. This model used Morris Lecar type neurons. This neuron model,
although having a high level of biological plausibility, requires a large computational effort to simulate large scale
networks. For this reason we considered a reduced order model, the Izhikevich one, which is computationally
much lighter. The comparison between neural lattices built using both neuron models provided comparable
results, both without traditional stimulation and in presence of all the stimulation protocols. This was a first result
toward the study and simulation of the large scale neural networks involved in pathological dynamics.

Using the reduced order model an inspection on the activity of two neural lattices was also carried out at the aim
to analyze how the stimulation in one area could affect the dynamics in another area, like the usual medical
treatment protocols require.

The study of population dynamics that was carried out allowed us to investigate, through simulations, the positive
effects of the stimulation signals in terms of desynchronization of the neural dynamics.

Conclusions: The results obtained constitute a significant added value to the analysis of synchronization and
desynchronization effects due to neural stimulation. This work gives the opportunity to more efficiently study the
effect of stimulation in large scale yet computationally efficient neural networks. Results were compared both with
the other mathematical models, using Morris Lecar and Izhikevich neurons, and with simulated Local Field
Potentials (LFP).
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Background

PD is a degenerative disorder of the central nervous sys-
tem that often impairs motor skills, speech, and other
functions [1]. It is characterized by muscle rigidity, tre-
mor, a slowing of physical movements (bradykinesia)
and, in extreme cases, a complete loss of physical move-
ment (akinesia). The primary symptoms are the results
of decreased stimulation of the motor cortex by the
basal ganglia and other brain stem structures, tradition-
ally considered as a consequence of the insufficient for-
mation and action of dopamine, which is produced in
the dopaminergic neurons of the Substantia Nigra reti-
culata (SNr). Other symptoms may include high level
cognitive dysfunction and subtle language problems,
postural instability and gait disturbances. In some cases,
it would be inaccurate to say that the cause is
“unknown”, because a small proportion is caused by
genetic mutations. It is possible for a patient to be initi-
ally diagnosed with PD but then to develop additional
features, requiring revision of the diagnosis [2].

At present, there is no cure for PD, but medications
or surgery can provide relief from the symptoms. The
most widely used form of treatment is L-dopa in various
forms. However, only 1-5% of L-DOPA enters the dopa-
minergic neurons. The remaining L-DOPA is often
metabolized to dopamine elsewhere, causing a wide vari-
ety of side effects. Due to feedback inhibition, L-dopa
results in a reduction in the endogenous formation of L-
dopa, and so eventually becomes counterproductive [3].
In the 1990s the surgical ablation has been used to treat
PD. Ablative brain surgery is the surgical lesion by
burning or freezing or with chemical substances of brain
tissue to treat neurological or psychological disorders.
The thalamus was a potential target for treating tremor,
especially in the Ventral Intermediate Nucleus (VIM)
and Centrum Medianum-Parafascicular (CM-Pf) nuclei.
The lesions caused by this type of surgery are irreversi-
ble, so generally DBS surgery is considered preferable to
lesion because it has the same effect and is adjustable
and reversible [4-6]. Treating PD with surgery was once
a common practice, but after the discovery of levodopa,
surgery was restricted to only a few cases. DBS is a sur-
gical treatment involving the implantation of a medical
device called a brain pacemaker, which sends electrical
impulses to specific parts of the brain. DBS in selected
brain regions has provided remarkable therapeutic bene-
fits for otherwise treatment-resistant movements and
affective disorders such as chronic pain, PD or essential
tremor and dystonia [7]. Despite the long history of
DBS, [8], its underlying principles and mechanisms are
still unclear. DBS directly changes brain activity in a
controlled manner, its effects are reversible (unlike
those of lesioning techniques). The Food and Drug
Administration (FDA) approved DBS as a treatment for
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essential tremor in 1997, for PD in 2002 [9], and dysto-
nia in 2003 [10]. DBS leads are placed in the brain
according to the type of symptoms to be addressed. For
dystonia and symptoms associated with PD (rigidity,
bradykinesia/akinesia and tremor), the lead may be
placed in either the Globus Pallidus or Subthalamic
Nucleus [11]. The right side of the brain is stimulated
to address symptoms on the left side of the body and
vice versa. DBS does not cure PD, but it can help to
manage some of its symptoms and subsequently to
improve the patient’s quality of life [12]. Presently, the
procedure is used only for patients whose symptoms
cannot be adequately controlled with medications, or
whose medications have severe side effects [13]. Its
direct effect on the physiology of brain cells and/or neu-
rotransmitters is currently debated, but it is apparent
that sending high frequency electrical impulses into spe-
cific areas of the brain can mitigate symptoms [14] and/
or directly decrease the side effects induced by Parkinso-
nian medications, [15], since it allows a sometimes huge
decrease in medications, making the medication regime
more tolerable. More recent neurophysiological data
suggest that the DBS can modify also the connections
among the cellular networks, giving rise to a holistic
interpretation of DBS action these aspects that should
be also considered in the future [16].

There are a few sites in the brain that can be targeted
to achieve different results, so each patient must be
assessed individually, and the particular site (or concur-
rent sites) to be stimulated is chosen based on the parti-
cular needs. Traditionally, the two most common sites
are the Subthalamic Nucleus (STN) and the Globus Pal-
lidus internus (GPi), but other sites, such as the CM-Pf
[17] and Nucleus Tegmenti Peduncolopontini (PPTg)
have recently shown important benefits for PD treat-
ment [18]. A tailored DBS with the targeting of multiple
nuclei was proposed to obtain the high clinical results
in complex parkinsonian syndromes [18]. The main
objective of stimulation is to re-establish desynchroniza-
tion via a pulse train, whose parameters are selected by
the Neurosurgeon at the main aim to decrease the dis-
ease symptoms. The patient with PD has a high syn-
chronization into band  (10+30 Hz) of the activities
STN and GPi (brakinesia., akinesia., etc.), whereas the
patient with L-Dopa into same band has high desyn-
chronization, with an improvement of movements [19].
These results confirm what is expected from the Gate
Control Theory [20], which states that the synchroniza-
tion of neuronal activity obstructs information flow in
brain structures, whereas, the desynchronization allows
information flow.

A increase of the neuronal synchronization causes a
increase of power spectral density (PSD) of the Local
Field Potential (LFP) taken from STN and GPi, whereas,
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the neuronal desynchronization causes a decrease of the
PSD.

Such a desynchronization in the f band takes place
also when the patient is subjected to DBS, sending a
pulse train with frequency larger than 70 Hz [21]. The
DBS of the STN and GPj, involves a synchronization of
neurons in the high frequencies and a desychronization
in the B band. These stimuli have the common goal of
reducing the synchronized activity of specific clusters of
neurons, in order to desynchronize the target popula-
tion, re-establishing a normal physiological activity in a
highly synchronized population.

The first step toward the understanding of the
dynamic effect of the DBS on the brain nuclei, is to
design a model of these areas and simulate the effects
caused by the stimulation. At this aim, after a deep
scanning of the state of the art, in [22], a model of the
neuronal BG was derived using a neural network made
up of Morris-Lecar neurons, arranged in a specific
population and showing, without any external input,
basic oscillations mimicking the Parkinsonian tremor.
As in [22], the positive effect of an electrical stimulation
induced by implanted electrodes was demonstrated in
such a population model. Therefore this model was
initially taken into consideration as a reference. Then a
fundamental issue, when the need of simulating large
scale populations arises, lies in the fact that the number
of floating point operations needed to simulate a time
unit for a single neuron is relevant for the time needed
to appreciate the results of the whole population. This
led us to analyze other neuron models that could reveal
the same characteristics (basically autonomous bursting
oscillations) as the Morris Lecar model, but being at the
same time much less demanding as regards the compu-
tational burden. Therefore, after analysing, in the first
part of this paper in the method section, the effect pro-
duced by a population of Morris Lecar units, the same
conditions were reproduced using a population consist-
ing of Izhikevich neurons [23], where parameters were
selected so as to show a resonant-like bursting charac-
teristics, similar to the Morris Lecar model, but with a
much less computational power demand. Of course, all
the other characteristics, like the synaptic dynamics and
all the other relevant parameters, were left unchanged.

In the second part of this paper, this new reduced
order model gave us the possibility to increase, where
needed, the population size using roughly the same
computation time. The positioning of the electrodes
within the population so built revealed the expected
effects i.e. a desynchronization within the neurons,
which led to a spreading of the power spectral density
over a wide frequency range. This effect even increases
in the presence of multiple stimulating sites within the
population.
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In this paper the population targets simulated repre-
sented the (STN) and Globus Pallidus Externus (GPe)
but recent researches have a new target like the PPn
[16].

Methods

The patients series and selection criteria, surgical plan-
ning and stereotactic technique are described elsewhere
[18]. In this paper, as also reported above, attention is
focused on the reduced order mathematical models of
neural structures able to show pathological PD condi-
tions and to show the positive effect of electrical stimu-
lation. The first mathematical model that we used
mimics some important characteristics of the dynamical
behaviour of a population of neurons of the STN, e.g. a
burst and spike activity. In particular, our model dis-
plays oscillatory activity, as observed in experimental
investigations of brain areas, such as the basal ganglia
and the STN, relevant for the characteristics for PD
[24]. In this method we used the well known Morris-
Lecar equation as a spike generator [25]. The single
STN neuron was described by a set of four time-delayed
differential equations, whose parameters and their role
in the overall neuron/connection dynamics are described
below:

dvj .
¢ dI] = 7gca7::nf(l)i - VCI‘I) — gwj(vj — ) — gi(v; — i) + I;luw + I;‘mse + If’"’jl (1)
+1; +X1511]?“"’;
dw,- [w,—nf(uj) — w]-] .
Y ,, @)
t Tw(vj)
I§low
] lowy.
g = ol = vt = 5) e ®)
dg; 1
) = — ) — S 4
it~ 1 4 et (1-8) = i @

where v; denoted the membrane potential of the j,
neuron and w; was an auxiliary variable Eq. 4 describes
the evolution of the parameter & (the index s denotes
synaptic), relevant for the synaptic coupling and modu-
lating the dynamics of the current I;yn(t) (see Eq. 10).

The gj is calculated as a function of the membrane
potential v;. The other parameters denote:

C: membrane capacitance;

Zew 8k & leak, Ca++, and K+ conductances through
membranes channel;

Vew Vi, Vi @ equilibrium potential of relevant ion
channels;

Vi, Vo V3 V4@ tuning parameters for steady state and
time constant.
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The dynamics of the calcium and potassium ion chan-
nels, responsible for the neurons spiking were controlled
by a set of three equations:

Minr(v) = 0.5[1 + tanh{v — v1/v,}]; (5)
Winf(v) = 0.5 [1 + tanh{v — v3/v4}]; (6)
w(v) = 1/cosh{(v — v3)/(2v4)}; (7)

The neuron model is dimensionless, and we modu-
lated the parameters to obtain realistic bursting patterns
[26,27].

The dynamics of the neuron was controlled by exter-
nal currents: a slowly varying current I;l"w, whose
dynamics is described in Eq. 3; this current had been
proposed by Rinzel and Ermentrout [28] as a source of
bursting, which reflects the inhibitory feedback from the
GPe.

The GPe neurons were excited by the STN activity v;,
and after a time delay 1; the activity in the GPe, in turn,
led to an inhibition of the STN neurons mediated by
recurrent pathways [29-33]. The bursting behaviour and
its frequency were controlled, via Eq. 3 by the Gaussian
distributed parameters ¢; and by the parameter a. The
former induces a slightly different natural frequency
within each neuron, whereas the latter modulates the
inhibitory response of the GPe neurons. Background
activity introduced by external and internal sources was
modelled by a spatially incoherent exponentially corre-
lated noise source with amplitude D,,y;. [34]. The expo-
nentially correlated noise was calculated by using a
second order algorithm with decay time 7,,,;5.. These
two last parameters contribute to the definition of I}"’i”.

The I}'Oise was described by a set of two time-delayed dif-

ferential equations:

dﬂwise 1
Jdt = — . * \/2Dnoise$ (t); (8)
noise
noise
de _ 1 o (1oise _ ﬂ“’ise)' )
dt Thoise ! ! ,

where &(t) is Gaussian distributed, zero mean noise
with unit standard deviation [34]. The neuronal
dynamics displayed by the simplified model STN neu-
rons are characterized by a bursting activity, wherein
the simulations the bursting frequency is chosen to be
close to frequencies usually observed in patients suffer-
ing from parkinsonian tremor. The bursts are formed by
a small number of spikes, six to ten per burst, which are
controlled by the feedback from the GPe.
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The bursting pattern displayed by the network ele-
ments is qualitatively similar to the bursting pattern
observed in wide areas of the nervous system
[35,36,26,27]. For illustration, we represent the neurons
in the populations as arranged in square lattices. Two
stimulation protocols were used: the first one using one
electrode positioned at the lattice center, and a second
one consisting of four stimulation electrodes, equally
spaced within the population.

For the numerical integration of the system we used
the routine by Runge-Kutta method of order four.

Simplifying the complex organization of the neuronal
population of the STN, we mimic excitatory couplings
between different neurons of the population. In litera-
ture, the origin of the synchronized activity established
between neurons in pathological conditions is not
known, but could be induced by the modification of the
bursting activity of the neurons.

Also, in our model, single spikes are not able to cause
a significant change of the spiking times of the other
neurons, only synchronized bursts are able to induce
such a change in the firing pattern.

To design the connection within STN neurons we
used a simple excitatory coupling (I;y") that does not
take into account any input from other BG nuclei. The
synaptic interaction is modelled as suggested by Terman
[37,38].

The action potential results in an opening of the cor-
responding ion gates, causing the income of the I;yn cur-
rent (Eq. 10). This is composed of the local gating
variables &, weighted with a distance-dependent func-
tion and multiplied with a maximal gating term and the
potential difference corresponding to the glutamatergic
synapses present in the STN [38-40]:

lly — el
¢ a

202
™) = g(vi — v " e 8
(1) = & (v S)NJznag ;

(1) (10)

Here ||y; - y¥|| is the distance between ky, the j,, and
the neuron. The details of connections within the
populations on which most of the current studies of
PD focus (the BG and especially the STN) are poorly
understood [37,40,41,38]. However, from the hippo-
campus and the visual cortex, we know that local
rather than global connections are developed [42,43].
Hence, we used a local pattern of synaptic interaction.
cn is a normalization factor. N is the number of neu-
rons within the population. The neurons were
arranged on a square lattice (lattice distance dl), as
shown in Figure 1.

The stimulation was applied via one or four electro-
des located within the network. The strength of the
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Figure 1 Synchronized activity of the coupled neuron
population. The membrane potentials of four neurons: v(t) v ,;(t)
Vso(t) Vg3 (t), randomly selected within a regular lattice of 100
neurons. Subscripts indicate their position in the lattice, ordered
lexicographically. The membrane potential dynamics show the
characteristic synchronized bursting activity, whereas in Figure 1,
bottom side, the plot of the membrane potential on two different
randomly selected neurons within the network is depicted,
outlining the large amount of synchronization. The upper part of
the diagonal shows a small side dispersion, due to the slightly
different times of the bursting activity. Typical numerical values for
the different variables are as follows: v(t)e [-0.3,0.14]; /oy, () €
[00080012; & € [0,0.0065] Parameters: g,= 1.0; ge= 209, =
05Vee=1.0; v =-07, v=-05v; =-001; v, =015 v3 = 0.1, vy =
0145, (= 10; ¢ = 1.15; v* = -0.22; ¢ = 0.0; 7; = 10; Gaussian
distributed & = 2:10-3(x 2:10-5) mean (= standard deviation); ¢, =
0.1; Bs = 0050, = 0.2; o= 0.02; s= 04; 0, = 0.5; v = -0.85; N = 100;
dl = 0.1; Dpoise = 0.00001; Tpoise = 5; s = 0.1; = 2.0584.

stimulation typically decays with distance from the sti-
mulation electrode. Which compartments of a neuron
are activated by an electrical extracellular stimulation
is still not clear [44,45]. The final result of the stimula-
tion is most probably a combination of excitatory
action directly at the soma of the neuron together with
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an activation of afferent fibres [46,31]. Therefore in
our mathematical model we elaborated excitatory
actions, which take place at the soma and within the
population mediated by excitatory synapses connecting
the STN neurons [47,40,30,41,48], and inhibitory
actions coming from an activation of inhibitory affer-
ent fibres [30-33].

Hence, the absolute value of the stimulation current
was used to control the slowly varying current. There-
fore, this type of stimulation mimicked the activation of
afferent inhibitory fibres. The exact interplay between
these different types of action remains unknown, to
date, and is essential in determining the shape of the
electrical pulses [49]. To cope with this challenge we
first investigated excitatory effects. The corresponding
stimulation term was given in Eq. (1) as X1S1I;tim. Here
s; = 1 is used to weight the local effectiveness of the sti-
mulation and the step function X; defines the onset and
offset of the excitatory stimulation acting directly at the
soma of the stimulated neuron.

For the standard high-frequency DBS we used biphasic
stimulation pulses. The first short positive pulse of
length 0.2 ms was followed by a longer negative pulse of
length 3.0 ms. The amplitude of the second pulse was
adjusted such that the biphasic pulse was charged
balanced, e.g. the total amount of applied electric charge
was zero (Figure 2).

Biphasic pulses are used in clinical applications to
avoid a charge deposition in the tissue. The stimulation
was administered through one of four electrodes posi-
tioned in the center of the population. The spatial acti-
vation profile of the stimulation is not known in detail
[50]. For simplicity, we assumed a certain level of homo-
geneity in the network and supposed that the stimula-
tion signal uniformly and exponentially decays with

1.2

0.6 1

Amplitude
o
F -9

0.2

02 L L L L L L L L
0

Time (ms)

Figure 2 High-frequency pulse train W(t) delivered through the
electrode. Pulses were permanently supplied at a frequency of 130
Hz. The figure shows the typical shape of a charge balanced pulse.
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increasing distance to the stimulation electrode. The sti-
mulation current was given by:
Ijs-tim(t) = cene 2l (1); (11)
where ||y; - ¥*|| is the distance between the k;, elec-
trode and j;, neuron, and ¢, is the parameter that con-
trols the strength of the stimulation. x;(¢) (Eq. 1)
determines the onset and offset of the excitatory stimu-
lation. W(¢) is the continuous pulse train consisting of a
high-frequency repetition of the biphasic pulses pre-
sented through the electrode (Figure 2). ¢, is a normali-
zation factor, which is dependent on the number of
stimulation electrodes used and which guarantees that
the total amount of stimulation remains independent on
the number of electrodes used.

To analyze the synchronization of dynamics of the
neuronal population, we quantified the phase of the net-
work considering the distribution of the phases. In the
network the busting activity was the prominent
dynamics, so we identified the bursting onset as a trig-
ger to detect the phase displacement, calculated, for a
single neuron j, as follows:

t— 1

¢j(t) = 27 (12)

foe1 — l
where t € [t;, tx,1], and £, was the onset time of the
ky, burst of the neuron. The quantity characterizing the

synchronization activity in oscillatory networks is given
by:

N
R@eplio] = | Y eplio) (13)
=1

Here R is the measure of synchronization and @ is
mean phase. It results that 0 < R(¢) < 1 for all times t; R
= 1 corresponds to perfect in-phase synchronization,
whereas R = 0 means complete desynchronization [5].

Therefore with the synchronization measure R we
were able to reliably detect in-phase synchronization
and desynchronization. As an example, in Figure 3 the
value of R(t) is reported for the whole network of 100
neurons already discussed (see Figure 1). Due to the
random initial conditions, R starts from an initial
(already high) value and reaches soon its maximum.

Stimulation consists in introducing a stimulation cur-
rent that influences Eq. 1. In this equation we remind
that the parameter X; controls the onset and offset of
the excitatory stimulation acting directly at the soma of
the stimulated neuron. Moreover W(t) is a pulse train
with a fixed high-frequency equal to 130 Hz, consisting
of a repetition of the biphasic pulses delivered through
the electrode. This approach was applied in both cases
studied, i.e. when only one electrode is implanted at the
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Figure 3 Synchronized activity of the coupled population of
100 neurons. (A) Bursting pattern of membrane potentials v(t); (B)
synchronization measure R given by Eq. 13.

centre of the network and when four electrodes are
positioned symmetrically with respect to the lattice.
Multi target stimulation reflects the common neurosur-
gical protocol. However, both the techniques (single and
multi-electrodes) have the common goal of reducing the
synchronized activity of the target population, either by
re-establishing a normal physiological activity in a highly
synchronized population of neurons or by reversibly
mimicking a tissue lesioning (DBS).

Stimulation methods via one central electrode

Figure 4 reports a simulation with 100 neurons orga-
nized in regular network with one central stimulating
electrode.

The figure shows that, in absence of stimulation, the
neurons bursting was strongly synchronized in-phase.
At t = 4.5 ; we introduced the stimulating signal: this
caused a desynchronization for ¢ _ 4.5 , leading a large
decrease in R(t) (average value R(t) = 0.4). The pulse
input, simulating DBS, acted so as to mask the synchro-
nizing effects of the excitatory interconnections within
the STN.

Stimulation methods via four electrodes

in the multi electrodes case, the stimulation strength (in
terms of current in Eq. 11) decayed with distance from
the stimulation site and each neuron received a mixture
of the four stimulation signals.

The DBS with four electrodes resulted in a good
desynchronization for excitatory stimulation, indicated
by a vanishing synchronization measure R (Figure 5(B)).
The mean synchronization measure was R(t) = 0.15 for
excitatory stimulation whereas, without stimulation, the
index of synchronization was R(t) = 0.9.
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Time ()

Figure 4 Effect of a simulation of the standard high-frequency
deep brain stimulation, via one central electrode, in terms
synchronized activity of the coupled population of 100
neurons. (A) Bursting pattern during the excitatory stimulation of all
the membrane potentials vj(t). These show the characteristic
synchronized (before stimulation) and desynchronized (after
stimulation) bursting activity; (B) Synchronization measure R given
by Eqg. 13. In plots (A-B), the stimulation signal W(t), (see Figure 2),
was formed by a 130 Hz pulse train composed of biphasic pulses
(0.2 ms positive followed by 3 ms negative stimulation). The
stimulation was supplied via one electrode situated in the central
part of the network. Parameters: X;= 1 for t € [4.5, 9]s, excitatory
stimulation; X; = 0, elsewhere,

Results

The model of the neural network that we used to simu-
late the biological behavior, in the previous section, was
made up of a limited number of neurons, imposed by
the limitations of computational resources.

Till now we modelled the neural network using Mor-
ris Lecar neurons consisting of six differential equations:
in these conditions, considering a reasonable computa-
tion burden, we could analyze a number of neurons not
larger than 100. For this reason we decided to study a
reduced order neuron model, with less differential equa-
tions but preserving the same characteristics.

We used the Izhikevich model equation, in particular
the chattering model for bursting neurons [23]. This
model offers a reduced complexity, if compared with the
Morris Lecar equations, retaining, at the same time, the
most important features. In particular the neurons can
fire with stereotypical bursts of closely spaced spikes
[51].

All the other characteristics, like the synaptic
dynamics (Zj,,), the noise component (), the stimu-
lation current ([5;,,,) and other relevant parameters for
the network, were left unchanged. The Izhikevich para-
meters were suitably modified in order to allow a (time)
comparison with the Morris Lecar model.

0 1000 2000 3000 4000 5000 6000 7000 8000 900D

020 M !

0 1000 2000 3000 4000 5000 6000 7000 8000 9000

Time(ms)

Figure 5 Effect of a simulation of the standard high-frequency
deep brain stimulation, via four central electrodes, in terms
synchronized activity of the coupled population of 100
neurons. (A) Bursting pattern during the excitatory stimulation; the
membrane potentials vi(t) of 100 neurons are plotted, showing the
characteristic synchronized and desynchronized bursting activity; (B)
Synchronization measure R given by Eq. 13. In plots (A-B), the
stimulation signal W(t), Figure 2, was formed by a 130 Hz pulse train
composed out of biphasic pulses (0.2 ms positive followed by 3 ms
negative stimulation). The stimulation was supplied via four
electrodes situated in the central network. Parameters: X; = 1 for t
e [4.59]s, excitatory stimulation; X;= 0 elsewhere. DBS: Standard
high-frequency deep brain stimulation.

The single Izhikevich membrane neuron model was
described by the two differential equations (14 and 15).
In dimensionless form the dynamics of the membrane
potential v; of the j,;, neuron, including the dynamics of
the synaptic coupling, taken from Eq.(4), is described by
the following set of equations:

dd';" = 0.0407 + 5vj + 140 — 1 + Il 4 I 4 [ 4 XT3 (14)
”Z;f - a(bv? — u); (15)
ilgt]s e 1+ e*(llfj*‘)s)/as (1- gJS) B ,Bsgf; (16)
v(t) =30mVift > T1, then {u _ =C+ J

Here u; is an auxiliary variable. The term

0.04v7 + 5v; + 140 — ujwas obtained by fitting the spike
initiation dynamics of cortical neurons so that units of
v; correspond to mV and units of time correspond to
ms. We modulated the parameters so as to obtain realis-
tic bursting patterns. The parameter a determines the
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rate of recovery, whereas b determines the sensitivity of
the recovery variable u; to the membrane potential v; .

The parameter ¢ determines the after-spike reset
value, which depends on fast high threshold conduc-
tance. Similarly, the parameter d determines the after-
spike reset of the recovery variable, which depends on
slow high-threshold conductance.

The Eq. 16, was the same as Eq.4 related the system
studied in the previous section. The I;,,;;. was calculated
offline by using a second order algorithm with decay
time T,,;5. [34]. We used a numerical integration
method based on the Eulero algorithm.

The parameters I and d control the bursting beha-
viour and its frequency. Also in this case the spikes that
form one burst are from 6 to 10 per burst. The
dynamics of a single neuron described by the model
presented is depicted in Figure 6.

To shape the connections we used the same synaptic
current seen in the method section to connect Morris
Lecar neurons, except that we introduced a Gaussian
distribution into the distance among neurons to better
emulate the realistic case.

7||(Y] +Gr)—(me + G'f)HZ

- c 202
() = g&(v — v " e 3
j (1) = &(v; S)N\/szg ?

8.(1) (17)

Here ||y; - yi|| is the distance between the k;and the
Jje neuron and G, is a random variable with Gaussian
distribution, zero mean and 0.1 standard deviation; it is
added to the distance among neurons.

40
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O,
Q
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<
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B0+ ] | I [ | / A
{ i 1/ f' "' / Jf f' ‘f’ | iy L7
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80 L L |
0 1000 2000 3000 4000 5000
Time (ms)
Figure 6 Activity of one neuron described by Izhikevich
equations. The membrane potentials v(t) of one neuron shows the
characteristic spiking and bursting activity. Typical numerical values
for the different variables are as follows. Parameters: D,jse =
0.00001. n = 0.001; 19 = 5 g =002, b=02c=50,d=07T, =
22,05 =0.1; B, = 005; 6, = 0.2, o, = 0.02;
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Figure 7 Synchronized activity of the coupled population of
neurons. The membrane potentials vj(t) of 2 on 225 selected
neurons, in one second, show the characteristic synchronized
bursting activity. Parameters: T; = 22, a; = 0.1; B = 0.05; 6; = 0.2; o

=002g, = 02 = -08; c,” = 2.1765;

N is the number of neurons in the network organized
in this random lattice (see Figure 7).

After the definition of the reduced neuron model and
the corresponding network, we use the same stimulation
protocol as that applied with the Morris Lecar system
but with a different number of neurons.

Using numerical methods we investigated the dynami-
cal properties of a neural population consisting of 250
neurons. In the simulations we used the same periodic
train pulse discussed above. In the first case, as seen
before, we stimulated with an electrode in the middle of
the network and then with four electrodes positioned in
the centre of the population. A further step was to con-
nect two identical populations to appreciate the effect of
the stimulation in both populations, resembling the
effect of multiple nuclei, typical of DBS.

Also in this case the R parameter was used as the
index of synchronization (Eq. 13). In this section we
study the synchronization and desynchronization with
the same protocol as in method section. So in the first
equation with the parameter X we can determine the
onset and offset of the excitatory stimulation, with s =
50 and W(t) as explained above. In Figure 8 a popula-
tion of 225 Neurons organized in random network was
stimulated with a central electrode.

This shows that the neuron bursting was strongly syn-
chronized in-phase and R(t) = 1 for t € 0[3]s. The mean
synchronization measure was R(t) = 0.6 for £ € [3,6.5]s.
In this case the network desynchronized after applying
the stimulation signal.

The DBS with four electrodes resulted in a good
desynchronization for excitatory stimulation, indicated



Latteri et al. Nonlinear Biomedical Physics 2011, 5:2
http://www.nonlinearbiomedphys.com/content/5/1/2

50 T T T T T
| | I “i I

13 | i I “
it

\

50+

-100
0

1000 2000 3000 4000 5000 6000

09 Ty ]

08 \ :
3 ,

07 \

06 . i

05
0

1000 2000 3000 4000 5000 6000

Time(ms)

Figure 8 The membrane potentials v(t) of one population of
225 neurons organized in a random network and stimulated
via one electrode positioned in the middle of the network.

X =1 for t e [3,6.5]s, excitatory stimulation; X = 0 elsewhere.

by a vanishing synchronization measure R. In this case,
(see Figure 9), the mean synchronization measure was R
(t) = 0.15 for excitatory stimulation whereas without sti-
mulation the index of synchronization was R(t) = 1.

These results, compared with those ones reported in
the previous section, allow us to appreciate the same
dynamical effect of the stimulation signals also in this
reduced order network. In summary we used:

50
O -
>
-50r ]
7
100 . L ) L .
0 1000 2000 3000 4000 5000 6000
1
08 % 8
06 \ 1
o
04 \\ /—\ b
0.2 \ / \\ W J/\ A
0 I L \‘/\JT“\/ |‘ / I
0 1000 2000 3000 4000 5000 6000
Time(ms)

Figure 9 The membrane potentials v(t) of 225 neurons are
plotted: they show the characteristic synchronized and
desynchronized bursting activity. The population was organized
in random network and stimulated via four electrodes. R:
Synchronization measure X = 1 for t € [3,6.5]s, excitatory
stimulation; X = 0 elsewhere.
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« Different, reduced order model consisting of Izhi-
kevich- Chattering

+ Number of neurons equal to 225;

+ Random network.

With this different system we obtained good values of
index synchronization. For this reason we decided to
continue the study with two coupled populations to
study the mutual interaction effects.

In this stimulation protocol we consider a setup,
where a strongly synchronized neuronal population
(population 1) acts as a pacemaker and drives another
population (population 2), which gets synchronized
only because of the driving. This structure resembles
the case in which the pacemaker-like population in
the BG and thalamus drives cortical motor
areas which induce the peripheral shaking [22].
Consequently we modelled two neuronal populations
(Figure 10): a driver (pacemaker) and a population
(cortex) driven by the pacemaker via synaptic connec-
tions. Within each population the coupling is local,
respectively, whereas the coupling strengths between
the two populations are randomized and obey a Gaus-
sian distribution.

To study the challenging situation of strong driving,
we assume that the mean coupling within the driving
population is equal to the mean coupling between the
two populations. The excitatory coupling between the
pacemaker and the driven system is given by g = 0.4.
Within the driven population a weak excitatory synaptic
coupling exists, which by itself does not induce synchro-
nization. For illustration, we represent the neurons in
the populations as arranged in square lattices and stimu-
lated either via four stimulation electrodes equally
spaced within the population or with one electrode situ-
ated in the central part of the network.

The local separation of stimulation and recording
sites guarantees that the feedback signal is not cor-
rupted by stimulation artifacts. Figure 11 and 12 show
the two populations without stimulation but coupled
together.

M
population 2
population 1
Figure 10 Schematic plot of the stimulation setup.
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Figure 11 The membrane potentials v(t) of the population 1 of
225 neurons connected with population 2 Figure 12. The
population was organized as a random network and not stimulated.

R: Synchronization measure X = 0 at all times.

The stimulation in population 1 causes an instanta-
neous desynchronization of population 2, which shows a
decrease of the synchronization measure R.

In this case we use only one electrode to stimulate the
coupled networks (Figure 13 and 14).

We can see that, when stimulated, the first population
acts as peacemaker for population 2 (driven population),
Figure 13, resulting in a decrease of the synchronization
index R. For the first population R(t) = 0.7 (where t €
[3,6.5]s). For the second population, Figure 14, the value
of R changes from an average of R(t) = 0.7 € (when t 0
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Figure 12 The membrane potentials v(t) of the population 2 of
225 neurons connected to population 1 (see Figure11). The
population was organized as a random network and not stimulated.
R: Synchronization measure X = 0 at all times.

50 T
0 -
=
50f
/ v
100 . s s ‘ ‘
0 1000 2000 3000 4000 5000 6000
1 ==
—
\w\
a8t N, |
e \\
s
0.6 S~
04 1 L Il L L
0 1000 2000 3000 4000 5000 6000
Time(ms)
Figure 13 The membrane potentials v(t) of the population 1 of
225 neurons connected with population 2 (see Figure 14). The
population was organized as a random network and stimulated via
one electrode. R: Synchronization measure X = 1 for t € [3,6.5]s,
excitatory stimulation; X = 0.

[3]s), to R(t) = 0.5 (when t € [3,6.5]s), as a consequence
of the coupling with population 1.

The stimulation is realised via four electrodes located
within the network. So we studied how the level of
desyncronization of the driven population changes with
a number of electrodes applied (Figure 15 and 16).

We can see in this simulation how the increasing the
number of electrodes causes an increasing in the desyn-
chronization effect. Stimulating the first population (Fig-
ure 15) acts as peacemaker for the driven population 2
(Figure 16).
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Figure 14 The membrane potentials v(t) of the population 2 of
225 neurons connected with population 1 (see Figure 13). The
population was organized as a random network and not stimulated.
R: Synchronization measure.
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Figure 15 The membrane potentials v(t) of the population 1 of
225 neurons connected with population 2, Figure 16. The
population was organized as a random network and stimulated via
four electrodes. R: Synchronization measure X = 1 for t [3,6.5]s,
excitatory stimulation; X = 0 elsewhere.

For the first population we have R(t) = 0.2 where t €
[3,6.5]s, moreover for the second population the value of
R change from R(t) = 0.5 with t € 0 [3]s, to R(t) = 0.3
with t € [3,6.5]s, given by coupling with population 1.

Discussion

The macroscopic effect of stimulation is represented by
a modification of the Spectrograms with respect to the
non-stimulated case. To appreciate the introduced
model and its response to a stimulating pulse train, we

>
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Figure 16 The membrane potentials v(t) of the population 2 of
225 neurons connected with first population 1, Figure 15. The
population was organized as a random network and no stimulated.
R: Synchronization measure.
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calculate the LPF for our network model and translate
the single burst activity into a macroscopic field mea-
sure. The LFP was calculated by an electrode positioned
in the center of the neuronal population and was given
by:

N
R, — Li(1)
V(t) = ;
0=, §j=1: :

(18)

where 7; is the distance between neuron j and the
recording electrode [50]. All the current components,
except for the stimulation current, contributed to the
ionic current /;(t)(Eq. 1). Therefore Ii(¢) is composed of

S . .
I]-w”“, Ii“’"“, I]?l"“’, I’ and the three ionic currents respon-

sible for the basic spiking features of the j;, STN model
neurons (i.e., the right hand side of Eq. 1). R, = 1 is the
extracellular resistivity that was assumed to be
homogeneous.

The dynamics of the non stimulated network for the
Moris Lecar model, in terms of LFP is reported (through
the spectrogram in dB) in Figure 17. From this plot we
can appreciate the presence of a high synchronization at
low frequencies: this is the key characteristic of a patho-
logical network, according to the neuronal gate theory.
It is to be outlined that we conducted the study consid-
ering a very low number of neurons with respect to the
actual case. Moreover relevant parameters, like the noise
level and sources and the details of the network topol-
ogy, in the in vivo case, were mostly unknown. Under
this perspective, the results obtained can be considered
relevant, above all in view of the effect of stimulation.

In the following the effect of stimulation is considered.
We apply the traditional stimulation via four electrodes
in the same 100 neuron population.
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Figure 17 Spectrogram in dB. LFP of a not stimulated population

of 100 Morris Lecar neurons.
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When we apply the pulse train at 130 Hz the network
desynchronizes particularly in the low frequency range,
leading to a certain spreading of the spectral intensity,
as we can see in Figure 18 for the Morris Lecar model.
The results shown in Figure 18 can be compared with
the literature [21] when the patient is treated with L-
Dopa. These results were mostly important for our
study: both in the un-stimulated and in the stimulated
case, we can appreciate the same effect of stimulation,
both in simulation and experimentally.

Referring to one population, in order to compare the
dynamics of the un-stimulated and the stimulated net-
work of the Izhijevich and Morris Lecar network, we
studied how the application of a stimulation signal
caused a change in the LFP of a population. As seen
before, we will appreciate a desynchonization of the LFP
through the spectrogram in dB of Izhikevich network.
From Eq.18 we calculated the LFP of the Izhikevich
population.

Now we can compare this LFP simulated signal of
Izhikevich neuron population with the LFP simulated
signal of the Morris Lecar population (Figure 17, Figure
19), both not stimulated.

From these plots we can see that there is a high syn-
chronization at low frequency and this is a characteris-
tic, mimicking the pathological network. This behavior
is clearly visible also in the Izhikevich neuron popula-
tion: between the [5-20] Hz range there is a high
activity.

Subsequently we applied the traditional stimulation via
four electrodes in a population (see Figure 20).

When we apply the pulse train at 130 Hz, the network
desynchronizes at the low frequencies and we notice a
spreading of the power density. The same effect is seen
in the literature, when the patient is treated with L-

Fregency Hz

Figure 18 Spectrogram in dB. LFP of a stimulated population for
all times with train pulse at 130 Hz of 100 Morris Lecar neurons.

-
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Frecency Hz

Time s

Figure 19 Spectrogram in db. LFP of a not stimulated population

of 225 Izhikevich neurons.
L J

Dopa [21], and in Figure 18, referring to the Morris
Lecar network. If we compare the Figure 17 with Figure
19 and 18 with Figure 20, we can see that we obtained a
same effects both in the stimulated and in the not sti-
mulated case.

Conclusions

In this work some models for studying the effect of sti-
mulation in neural populations mimicking the dynamics
met in the relevant brain neural tissues of PD patients
are analysed. A new structure, built using a reduced
order neuron model (the Izhikevich one), computation-
ally much lighter, was demonstrated to lead to the same
results as other neural networks already introduced in
the literature. This gives the opportunity to more

Freqency Hz

L L L i i L
0 05 1 1.8 2 25 3 35 4 4.5 5
Time s

Figure 20 Spectrogram in db. LFP of a stimulated population for
all times with train pulse at 130 Hz of 225 Izhikevich neurons High-

frequency pulse train W(t) delivered through the electrode.
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efficiently study the effect of stimulation in large scale
neural networks. Results were compared with the other
mathematical models, i.e. Morris Lecar neurons, analyz-
ing both parameters related to the neural level (the syn-
chronization effect) and indexes related to the
macroscopic level (LFP). The results agree in terms of
the positive effect of the stimulation in terms of power
spectral density. We consider these results very promis-
ing: they open the way to the possibility of simulating
large scale networks in pathological conditions at the
aim to design new control strategies for the PD effect
mitigation.

List of abbreviations

PD: Parkinson's Disease; DBS: Deep Brain Stimulation; BG: Basal Ganglia;
FDA: Food and Drug Administration; STN: Sub-Thalamic Nucleus; GPi:
Globus Pallidus internus; PPTg: Nucleus Tegmenti Peduncolopontini; PSD:
Power Spectral Density; LFP: Local Field Potential; GPe: Globus Pallidus
externus; VIM: Ventral Intermediate Nucleus; CM-Pf Centrum Medianum-
Parafascicular.
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