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Abstract
Background: Duration and speed of propagation of the pulse are essential factors for stability of
excitation waves. We explore the propagation of excitation waves resulting from periodic
stimulation of an excitable cable to determine the minimal stable pulse duration in a rate-dependent
modification of a Chernyak-Starobin-Cohen reaction-diffusion model.

Results: Various pacing rate dependent features of wave propagation were studied
computationally and analytically. We demonstrated that the complexity of responses to stimulation
and evolution of these responses from stable propagation to propagation block and alternans was
determined by the proximity between the minimal level of the recovery variable and the critical
excitation threshold for a stable solitary pulse.

Conclusion: These results suggest that critical propagation of excitation waves determines
conditions for transition to unstable rhythms in a way similar to unstable cardiac rhythms.
Established conditions were suitably accurate regardless of rate dependent features and the
magnitude of the slopes of restitution curves.

Background
Studies of unstable waves in reaction-difusion systems are
the subject of significant theoretical and practical impor-
tance, particularly with respect to the analysis of biologi-
cal excitable media such as nerve and cardiac tissue [1,2].
Pioneering studies suggested that propagation of waves in
these media may be governed by a few fundamental
parameters which influence formation of the excitation
wavefront [3,4]. One such parameter, e = τf/τr << 1, reflects
the two order-of-magnitude difference in time constants
between the fast excitation, τf, and slow recovery, τr, proc-

esses, while another one, excitation threshold, vr, is linked
to the critical level of excitation necessary to initiate the
propagation of an excitation pulse through the medium.

Although examination of instabilities based on this
approach would possess an obvious advantage of being
theoretically analyzable, attention has primarily focused
on experimentally motivated methods. It has been shown
in tissue preparations that the duration of excitation,
known as action potential duration, and the speeds of
excitation wavefronts and wavebacks depend on previous
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stimulation periods and refractory (diastolic) intervals
[5,6]. The analysis of such dependences, known as restitu-
tion curves, has been introduced as a method for evalua-
tion of stability of excitation waves in biological excitable
media [7-17].

Numerical simulations also confirmed these findings and
demonstrated that Th and Tf can be fitted to specific resti-
tution curves (called a restitution portrait) using time
dependent gate variables in various reaction (ionic) mod-
els [18-25]. Several recent studies implemented an
approach based on a projection of different ionic models
to discrete maps with sufficient rate-dependence (mem-
ory) and multi-component equivalent restitution por-
traits [20-27]. However, it was later confirmed that none
of the stability criteria derived from these complex dis-
crete maps predicted the onset of alternans in tissue stud-
ies [28]. Computational experiments described in [19]
suggest that such deficiency is more likely to result from
lack of analysis of propagation in the medium as a whole
rather than from the lack of particular details of the ionic
models of individual excitable cells.

To address this deficiency we introduce an alternative
approach based on the analysis of a modified Chernyak-
Starobin-Cohen (CSC) reaction-diffusion model which
accounts for effects of wave propagation. In contrast to the
complexity of the majority of existing reaction-diffusion
models, the CSC model employs just a few fundamental
parameters and is analytically solvable. It offers a rigorous
criterion for determining the stability of excitation wave
propagation in an excitable cable [29,30].

In this paper, we study the stability of excitation waves by
examining their propagation in a one-dimensional CSC
medium, and modify the model accordingly to incorpo-
rate the memory linked pacing rate driven adjustments of
excitation threshold, vr. This modification was motivated
by direct experimental measurements of vr that demon-
strated that exponential-like evolution of excitation
threshold takes place over the course of multiple pacing
cycles following stepwise changes in pacing rate in guinea
pig and human ventricular muscle [31-33]. Such an
approach allows us to establish the condition for stability
of propagation of excitation waves using analytical and
numerical solutions of the reaction-diffusion model while
incorporating into the model experimentally observed
action potential restitution dynamics.

We demonstrate that in a wide range of excitation thresh-
olds, vr, and pacing rates, Tm, regardless of the particular
values of slopes of restitution curves and rates of adapta-
tion of vr (more or less memory), the loss of stability of
waves in an excitable cable of finite length is determined
by proximity of the minimal level of the recovery variable,

v, at the foot of the action potential and the critical excita-
tion threshold of the solitary pulse computed analytically
in [29].

Methods
Basic equations that describe a class of exactly solvable
models for excitable media have been defined in [29,30].
Here we introduce a modification of this analytical model
by adjusting the excitation threshold, vr, in response to
changes in frequency of external pacing. We will consider
the model in dimensionless form:

u(x, t) and v(x, t) are a membrane potential and slow
recovery current, respectively. λ, ²,ζ, and τ are the model
parameters, where τ-1 <² . The scaling of the system is
described below.

The pacing function, P (x, t), is defined as a product of two
functions, X(x) and Y (t). Each is composed of the Heavi-
side step function, Θ (x), as follows: X(x) = A [Θ(x-δ1) -
Θ(x-δ2)] and Y (t) = Θ (tk) - Θ (tk + Ts), where A and δ2 - δ1
are the amplitude and width of the pulse, respectively, Ts
is the pulse duration, and tk = tN(m-1) + [k - N (m - 1)]Tm are
the instants of time when stimuli are delivered. Tm is the
pacing period, N represents the number of stimuli at each
pacing interval plateau, the index m denotes each pacing
plateau, m = 1, ..., M, and k is an integer in the range k = 1,
..., N M . The number of stimuli N is the same for all pla-
teaus. Overall during the course of the protocol, Tm pro-
gressively decreases to the minimal value when stable
propagation of the wave is still possible.

The right-hand term B in Eq. (3) responds to a stepwise
evolution of pacing period, Tm. Similar to the experimen-

tal findings described in [31,32], stepwise changes in B
result in smooth exponential transition of the excitation
threshold from one steady-state plateau to another. For
the sake of simplicity, a steady-state value of excitation

threshold at each mth plateau, , was chosen to be
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linearly dependent on the corresponding pacing interval,
Tm:

Here α and β are positive parameters that determine the
amplitude of change of Bm between two consecutive pac-
ing plateaus.

The scale of u is the maximum steady-state action poten-

tial amplitude U0, the scale of v is given by σNAU0, and the

time scale is Cm/σNA, where σNA corresponds to the maxi-

mum sodium conductance and Cm is the membrane

capacitance. The characteristic length scale is given by

, where D is the diffusion coefficient. The small

parameter ² << 1, is equal to Cm/(tKσNA) and ζ = σK/σNA

where σK and τK correspond to the maximum potassium

conductance and potassium current time constant, respec-
tively.

Results and discussion
The system of Eqs. (1)–(3) was solved numerically on a
short cable of 150 grid points with spatial and temporal
grid intervals of Δx = 0.13 and Δt = 7.2 × 10-4, respectively.
Periodic wavetrains were produced by stimulating the
cable with a square wave at the left end using the function
P (x, t) = X(x)Y (t), defined above, where A = 1.2, δ1 = 2Δx,
δ2 = 15Δx, and Ts = 103Δt. The model parameters λ, , and ζ
were equal to 0.4, 0.1, and 1.2, respectively, for all simu-
lations. Numerical solutions were computed using a sec-
ond-order explicit-difference scheme with no-flux
boundary conditions [13]. A typical solution as shown in
Figure 1 depicts the propagation of a single pulse between
two successive pacing stimuli. The length of the cable is
approximately equal to the width of the fully developed
pulse to reflect the physiologically relevant relative
dimensions of the heart and a propagating excitation
wave in a wide range of heart rates and excitation thresh-
olds.

In order to quantify the dynamics of the system in
response to perturbations in Tm (Eqs. (1)–(3)), we com-
puted the action potential duration (Th), the diastolic
interval (Tf) at each pacing period, and the minimal value
of the recovery variable at the foot of the propagating
pulse, vmin (Figure 1). The values of vmin are always greater
than vr due to incomplete medium recovery from repeated
pacing, and vmin increases monotonically with decreasing
Tm. The action potential duration was defined as the inter-
val of time when u > v at a specified node, x0. Accordingly,
the refractory period, Tf, was defined as the interval of
time when u <v. In order to analyze steady-state duration

of the developed pulse, we measured Th at the center of the
cable x0 = 10.

Stability of propagation for constant excitation threshold

The system of equations was initially studied with Eq. (3)

replaced by its asymptotic form, which is equivalent to τ
= ∞. The cable was stimulated periodically in a stepwise
manner with one percent decrements between each pac-
ing plateau (40 consecutive pacing periods) over the range
Tm = 61 to 28. At the end of each plateau, Th, Tf, and vmin

had all reached steady state values that were used to com-
pose the steady state restitution curve and determine the

minimal stable action potential duration, , for a

given excitation threshold. Steady state restitution curves
computed for two different excitation thresholds are
shown in Figure 2.

Insert A portrays the analytical dependence of Th on exci-

tation threshold vr for a stable solitary pulse [29]. It also

shows the critical level of excitation threshold (  =

B = - T  +m mβ α (4)

D NA/σ

Th
end

v r
crit

Formation and propagation of a pulseFigure 1
Formation and propagation of a pulse. Formation and 
propagation of a pulse between successive pacing stimuli 
applied at the left end of the cable (vr = 0.19, vmin = 0.29, and 
Th = 9.0 measured at x0 = 10). Solid and dashed lines show 
spatio-temporal dynamics of u and v, respectively. The first 
and last snapshots correspond to the moments when two 
successive pacing stimuli are applied. Time intervals between 
the snapshots are equal to 7.2 (20% of the pacing period).
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0.359, vertical dashed line) beyond which no stable soli-
tary pulse exists. For the repeatedly paced cable, the
numerically determined minimal steady state values,

, at the ends of the two steady-state restitution curves

are depicted by the two circles (open and filled) in the
lower right corner of insert A, which are to the right of the

vertical dashed line v =  (Figure 2). The location of

both circles demonstrates that the loss of stability for the
sequence of pulses occurs when vmin is close to the critical

excitation threshold for the stable solitary pulse . The

character of the loss of stability at the ends of restitution

curves depends on the margin between vmin and 

which decreases for greater values of excitation threshold
vr (Figure 2, Insert A, filled circle).

It was observed that for = 0.1 complexity of block type
behavior for higher values of vr evolved from 2:1 to 3:2

responses, followed by Th alternans when the difference

between vmin and  was less than 3%. The evolution

from stable propagation to propagation block and Th

alternans is illustrated by inserts B, C, and D, respectively.
Insert B characterizes stable adaptation of Th from one

steady-state to another. The adaptation is rapid, and as a
result the steady-state and S1–S2 curves nearly coincide.
At the end of the restitution curve with lower values of vr

stable action potential propagation transforms into a
block type N:M (N>M) response shown in insert C (upper
curve, vr = 0.25). For higher values vr when vmin is closer to

, stable propagation transforms to Th alternans shown

in insert D (lower curve, vr = 0.31).

Similar trends were observed for higher and lower values
of ². For ² = 0.06 2:1 conduction blocks transformed
directly to alternans regardless of the difference between

 and vmin. For ² = 0.14 however, there was a progres-

sion from 2:1 responses to more complex 3:2 patterns
which culminated in alternans as the difference between

 and vmin decreased from approximately sixteen to one

percent.

Obtained results confirm that irrespective of the restitu-
tion slopes, alternans do not appear until, at the end of

the restitution curve, the value of vmin exceeds  by

some small margin (Figure 2). Under these conditions
alternans appear for slopes smaller than one (S = 0.44,
Figure 2 lower curve), and conversely, stable propagation
occurs for slopes greater than one (S = 1.94, Figure 2
upper curve).

Finally, although very useful for stability analysis, the
original CSC model with constant excitation threshold
does not allow reconstruction of transitional restitution
behavior near a change in pacing rate. Appropriate model
enhancements are described in the next section.

Stability of propagation with rate-dependent vr
In order to reproduce experimentally observed restitution
curves, the system of equations (1)–(2) was upgraded
with Eq. (3), which allowed us to incorporate effects of
memory [28]. We will show that in this system the crite-
rion for the appearance of action potential duration alter-
nans will be the same as in the memory-less case detailed

Th
end

v r
crit

v r
crit

v r
crit

v r
crit

v r
crit

v r
crit

v r
crit

v r
crit

Steady state restitution curves with constant vrFigure 2
Steady state restitution curves with constant vr. 
Steady state restitution curves for two values of excitation 
threshold vr = 0.25 (upper curve) and vr = 0.31 (lower curve). 
Insert A shows the analytically determined dependence of Th 

on excitation threshold vr for stable solitary pulse [29]. Criti-

cal level of  = 0.359 beyond which no stable solitary 

pulse exists is indicated by the dashed line. Open and filled 
circles located near the intersection above and below hori-
zontal dashed line correspond to the ends of restitution 
curves shown as solid lines in the main domain. Inserts B and 
D illustrate the transition between stable action potential 
adaptation and alternans at the end of the curve with higher 
value vr = 0.31. Insert C shows the evolution of u and v dur-
ing a 3:2 propagation block at the end of the curve with 
lower value vr = 0.25.
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in the previous section describing the cable with constant
excitation threshold.

The pacing protocol described previously was used again
to construct the steady-state restitution curve and deter-
mine the minimal stable action potential durations. In
addition, a similar stepwise protocol with larger 5% dec-
rements in Tm was used. A conventional S1–S2 restitution
protocol, in which the cable was stimulated for forty con-
secutive periods with a given Tm (S1) followed by delivery
of a premature S2 stimulus, was used to compute S1–S2
curves around given steady-state values of Th.

A gradual phase of constant BCL adaptation followed the
immediate S1–S2 response to an abrupt change in pacing
rate, and the Th transients had a duration of 5–50 stimula-
tion periods depending on the adaptation constant, τ .
Pictured in the restitution domain, this combination of
S1–S2 and constant BCL responses formed the triangles
typical of experimental and computational studies of ven-
tricular action potential [21,22,24].

Figure 3 shows a superposition of the steady state restitu-
tion curve with five transitions between different steady-
state values of Th computed with 5% changes in Tm starting
with Tm = 37.7 (β = 5 × 10-3, α = 0.375). At longer BCLs,
the S1–S2 curves are shallower than the steady-state resti-
tution curves, and all of the transient constant BCL

responses after the first response to the change in stimula-
tion rate lie on a straight line with negative slope, which is
referred to as the "BCL-line" [21,22,28]. At shorter BCLs,
the slope of the S1–S2 curve increases. When the slope of
the S1–S2 curve (insert A) is greater than the slope of the
steady-state curve, the response (dots near the end of
steady-state curve) to a decrease in stimulation interval
evolves as a series of oscillations that damp to a new
steady-state value.

Figure 4 summarizes some typical Th responses to an
abrupt change in pacing rate. In inserts A and B, the
response is a gradual adaptation to a subsequent steady-
state during which time the BCL is constant. The duration
of this adaptation is directly controlled by the constant, τ.
When τ is small, the bifurcation occurs almost immedi-
ately after five stimulation periods (Figure 4, insert C).
When τ is large, the bifurcation is correspondingly
delayed as shown in the insert D. This might be under-
stood as "sliding" into the unstable area after an abrupt
change in pacing rate due to the gradual increase of vr,
rather than simply jumping into it as for the cable with
constant excitation threshold.

Restitution curvesFigure 3
Restitution curves. A series of S1–S2 and constant BCL 
restitution curves superimposed on the dynamic restitution 
curve for β = 5 × 10-3 and α = 0.375. The range of excitation 
thresholds depicted, therefore, is from vr = 0.18 at Tm = 37.7 
to vr = 0.23 at Tm = 27.7. The insert shows a close-up view of 
the S1–S2 restitution curve around the point Tm = 29.4 
where the S1–S2 curve is steeper than the dynamic restitu-
tion curve.

A

B

Development of alternansFigure 4
Development of alternans. Steady-state restitution curve 
for rate-dependent excitation threshold (β = 1 × 10-3 and α 
= 0.346). Inserts A and B show Th response to a 5% perturba-
tion in stimulation rate, for initial Tm = 50.40 (vr = 0.30). The 

adaptation constant for insert A is τ = 144 and for insert B is 
τ = 576. Inserts C and D show Th alternans for the same two 

adaptation constants (τ = 144 for C and τ = 576 for D) with 
initial Tm = 37.94 (vr = 0.31). The horizontal dashed line near 
the end of the restitution curve marks the critical duration of 

a solitary pulse, .

C D

A B

Th
crit
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Our simulations showed that complexity of wave dynam-
ics for the system (1)–(3) was also determined by the dif-
ference between the values of vmin and critical excitation

threshold for a stable solitary pulse . For ² = 0.1 at the

end of the restitution curve for the case shown in Figure 3

the value of vmin was 10% greater than the value of .

Under these circumstances, we found that damping oscil-
lations preceded conduction block type 3:2 responses
(Figure 3, insert B). When the difference between vmin and

 decreased to 3% of , perturbations of Tm trans-

formed into persistent Th alternans (Table 1).

Similar to simulations with constant vr, for rate dependent

excitation threshold the complexity of transition from
blocks to alternans also increased for higher values of
parameter ². For ² = 0.06 transformation from 2:1 blocks
to alternans was almost abrupt. However, for higher val-

ues of ² as the difference between vmin and  further

decreased, the transition to alternans was more complex
and evolved through stages with higher 3:2 and 4:3 com-
plexity of propagation blocks (Table 1).

Conclusion
Previous attempts to determine conditions for action
potential duration alternans have focused on the analysis
of the slopes of restitution curves in various theoretical
and experimental models. However, these efforts did not
result in a consistent theoretical criterion for prediction of
action potential duration instabilities [22,24,27,28]. In

part this happened because stability was examined solely
in regard to the magnitudes of particular restitution slopes
rather than with the analysis of the conditions for a criti-
cally propagating pulse [13,34,35].

In this paper, we have demonstrated that stable propaga-
tion of excitation waves in a paced cable occurs until the
minimal level of the recovery variable in front of the rising
action potential wave reaches a value that is greater than
the critical excitation threshold for the stable solitary
pulse by some small margin. This margin decreases for
higher vr, which agrees with previous analytical findings
for the CSC model approximating the critical speeds of an
infinite wavetrain [30]. At the limit of the critically stable
pulses, our numerical system revealed two types of unsta-
ble behavior. When the minimal value of recovery varia-
ble at the foot of the propagating wave approached the
critical level of excitation threshold beyond which no sta-
ble solitary pulse was able to propagate, we observed con-
duction blocks of increasing complexity followed by
alternans. Alternans developed slower for larger values of
the adaptation constant, τ.

It was demonstrated that these conditions were valid with
or without rate-dependent features and regardless of the
magnitude of the slopes of restitution curves.
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