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Abstract
Background: Functional Near-Infrared Spectroscope (fNIRs) is one of the latest technologies
which utilize light in the near-infrared range to determine brain activities. Near-infrared technology
allows design of safe, portable, wearable, non-invasive and wireless qualities monitoring systems.
This indicates that fNIRs signal monitoring of brain hemodynamics can be value in helping to
understand brain tasks. In this paper, we present results of fNIRs signal analysis to show that there
exist distinct patterns of hemodynamic responses which recognize brain tasks toward developing
a Brain-Computer interface.

Results: We applied Higuchi's fractal dimension algorithms to analyse irregular and complex
characteristics of fNIRs signals, and then Wavelets transform is used to analysis for preprocessing
as signal filters and feature extractions and Neural networks is a module for cognition brain tasks.

Conclusion: Throughout two experiments, we have demonstrated the feasibility of fNIRs analysis
to recognize human brain activities.

Background
Neurophysiological and neuroimaging technologies have
contributed much to our understanding of normative
brain function. Commonly employed techniques such as
electroencephalography (EEG), event-related brain poten-
tials (ERPs), magnetoencephalography (MEG), positron
emission tomography (PET), singlepositron emission
computed tomography (SPECT), and functional magnetic
resonance imagining (fMRI) have dramatically increased
our understanding of a broad range of brain activities [1].
EEG and ERP paradigms have contributed important data
for developing models of cognitive and emotional
processing. However, EEG measures are limited in their
ability to provide the precise location of an electrical
source. EEG does yield spatial information, but this spa-

tial information must be reconstructed by probabilistic
models. fMRI is currently considered the "gold standard"
for measuring functional brain activation. The limitations
of fMRI relative to fNIRs include the fact that participants
must lie within the confines of the magnet bore, which
limits its use for many applications. fMRI is also highly
sensitive to movement artifact; subject movements on the
order of a few millimeters can invalidate the data. Finally,
fMRI systems are quite expensive [1].

In recent years, functional near-infrared spectroscopy
(fNIRs) has been introduced as a new neuroimaging
modality with which to conduct functional brain-imaging
studies. fNIRs technology uses specific wavelengths of
light, introduced at the scalp, to enable the noninvasive
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measurement of changes of deoxygenated hemoglobin
(deoxy-Hb) and oxygenated hemoglobin (oxy-Hb) dur-
ing brain activity. Wireless fNIRs system consists of per-
sonal digital assistant (PDA) software controlling the
sensor circuitry, reading, saving, and sending the data via
a wireless network. This technology allows the design of
portable, safe, affordable, noninvasive, and minimally
intrusive monitoring systems [2].

For such advanced features, fNIRs signal processing really
becomes an attractive field for computational science. In
[3], M. Izzetoglu et al. investigated canceling motion arti-
fact noise from fNISs signals by Wiener filter. The authors
indicated that the noise including in fNIRs is an important
limitation on the use of optical data in these applications.
Motion artifact can cause the NIR detectors to shift and
lose contact with the skin, exposing them to either ambi-
ent light or to light emitted directly from the NIR sources
or reflected from the skin, rather than being reflected from
tissue in regions of interest. Hence, canceling noise from
fNIRs signals is one of necessary tasks in order to use
fNIRs as a brain monitoring technology in its full poten-
tial to many real life application areas. In [4], M. Izzetoglu
et al. presented statistical analysis of fNIRs signals for the
purpose of cognitive state assessment while the user per-
forms a complex task. The results indicated that the rate of
change in blood oxygenation of fNIRs signals was signifi-
cantly sensitive to task load changes and correlated fairly
well with performance variables. In [5,6], S. Fantini et al.
describe a specific frequency-domain instrument for near-
infrared spectroscopy and imaging of tissues that shows
the hemodynamic changes monitored with NIR spectros-
copy correlate with the activation state of the cortex in
response to a stimulus. They investigated the possibility of
combining phase and average intensity data in fNIRs fre-
quency-domain imaging of the brain activation present-
ing different spatial/temporal features.

In [7], R. Sitaram et al. presented results of signal analysis
indicating that there exist distinct patterns of hemody-
namic responses which could be utilized in a pattern clas-
sifier. The fNIRs signals were processed to remove artifacts
from heart beat and high frequency noise from muscle
activities by Chebyshev type II filter. And then, they
applied two different pattern recognition algorithms sep-
arately, Support Vector Machines (SVM) and Hidden
Markov Model (HMM), to classify the data offline. SVM
classified with an average accuracy of 73%, while HMM
performed better with an average accuracy of 89%.

In this work, we consider fNIRs signals and analyze irreg-
ular and complex characteristics by Higuchi fractal dimen-
sion algorithms [10]. This method was successfully
applied for EEG bio-signal processing in [8,9]. Fractal
dimension values along period of time serve as meaning-

ful characteristics of studied bio-signals. With obtained
experiment results, fractal dimensions of fNIRs signals can
not clearly indicate information of brain activities. There-
fore, we proposes Wavelet-Neuron model to recognize
brain activities through fNIRs signals. Wavelet transform
became the foundation for the most popular techniques
for signal analysis and representation in a wide range of
applications. Wavelets processing play a role of extraction
algorithm to draw features of fNIRs signals and to filter
high frequency noises. Extracted features are inputs of
neural networks to classify brain tasks. Neural networks
are very powerful tools for pattern recognition. The neural
network used wavelets coefficients as its inputs and brain
activities are depicted by outputs. The paper is organized
as follows: In section 2, the mathematics basic models are
set up including Higuchi's fractal dimension algorithm,
Wavelet transform, and Neural Network model. In section
3, fNIRs data acquisition is described including instru-
ments and 2 experiments. Section 4 shows results and dis-
cussion. Section 5 is conclusion.

Methods
Higuchi fractal dimension
Higuchi's algorithm shown in [10] performs fractal
dimension of a time series directly in the time domain. Its
principle is based on a measure of length, L(k), of the
curve that represents the considered time series while
using a segment of k samples as a unit. If L(k) scales like

Fractal dimension, Df, equals 1 for a simple curve and
equals 2 for a curve which nearly fills out the whole plane.
Df measures complexity and irregular characteristics of
time series signals.

From a given time series: X(1), X(2), ..., X(N) the algo-
rithm constructs k new time series:

where:

N – total number of samples,

m – initial time,

k – interval time,

int (r) – integer part of a real number r, set

The length, Lm(k), of each curve 
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where N – total number of samples.

Lm(k) is not 'length' in Euclidean sense, it represents the
normalized sum of absolute values of difference in ordi-
nates of pair of points distant k (with initial point m). The
length of curve for the time interval k, L(k), is calculated
as the mean of the k values Lm(k) for m = 1, 2,..., k

The value of fractal dimension, Df, is calculated by a least-
squares linear best-fitting procedure as the slope coeffi-
cient of the linear regression of the log-log graph of (1)

Wavelet transform
Most interesting signals contain numerous nonstationary
or transitory characteristics: drift, trends, abrupt changes,
and beginnings and ends of events. These characteristics
are often the most important part of the signal, and Wave-
lets analysis is well suited to detecting them.

From [11], the wavelets transform of a signal s is the fam-
ily C(a,b), which depends on two indices a and b. C rep-
resents how closely correlated the wavelet is with this
section of the signal. The higher C is, the more the similar-
ity. More precisely, if the signal energy and the wavelet
energy are equal to one, C may be interpreted as a correla-
tion coefficient. The set to which a and b belong:

Where:

a = 2j, b = k2j, (j,k) ∈ Z2

ψ is wavelet functions

a is scale of wavelets functions

b is position of wavelets functions on the signal s.

From an intuitive point of view, the wavelets decomposi-
tion consists of calculating a "resemblance index"
between the signal and the wavelets located at position b
and of scale a. If the index is large, the resemblance is

strong, otherwise it is slight. The indexes C(a,b) are called
coefficients.

Let us fix j and sum on k. A detail Dj(t) is nothing more
than the function

Now, let us sum on j. The signal is the sum of all the
details:

The details have just been defined. Take a reference level
called J. There are two sorts of details. Those associated
with indices j<J correspond to the scales a = 2j ≤ 2J which
are the fine details. The others, which correspond to j > J,
are the coarser details. We group these latter details into:

which defines what is called an approximation of the sig-
nal s. We have just created the details and an approxima-
tion.

The equality signifies that s is the sum of its approxima-
tion Aj and of its fine details. From the previous formula,
it is obvious that the approximations are related to one
another by

Aj-1 = Aj + Dj (9)

The total number of computed coefficients in the matrix
shown in Fig. 1 is precisely equal to the length of the orig-
inal sequence s. Aj depicts as feature vectors that serve as
input patterns of neural networks in next subsection.

To quantify the improvement, the change in signal to
noise ratio (SNR) was used as a measurement of perform-
ance. The SNR-gain is computed as
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The average power for the raw and filtered signals, by Par-
seval's theorem, is computed by Power Spectral Density
(PSD) as

Neural Networks
The main aim of this paper is recognition and classifica-
tion fNIRs signals corresponding to brain activities. After
testing for non-linear in fNIRs signal by Higuchi fractal
dimension and feature extracting by wavelet transforms,
neural networks are very powerful tools for classification
or pattern recognition shown in [11]. Informative features
are extracted from the coefficients computed with the
wavelets transform and used as inputs for classification.

The multi-layer fully connected feed-forward neural net-
work depicted in Fig. 2 is used here; it includes an input
layer, one hidden layer and an output layer. Signal propa-
gation is allowed only from the input layer to the hidden
layer and from the hidden layer to the output layer. Input
variables come from AJ, wavelets coefficients, mentioned

above section. The outputs are the desired classes. The
number of inputs is the number of channels, and the
number of hidden nodes, transfer functions affect the
training performance hence need to be chosen carefully.

As usual, the back propagation training is based on the
minimization of the following quadratic cost function:

where:

N is number of patterns.

yn is output of network

dn is desired output.

fNIRs data acquisition
We used a multichannel fNIRs instrument, OMM-3000
from Shimadzu Corporation, Japan, for acquiring oxygen-
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Wavelets transform of a sequence S, with D as details, A as an approximation, and J as level of wavelets analysisFigure 1
Wavelets transform of a sequence S, with D as details, A as an approximation, and J as level of wavelets analysis.

Multi-layer feed forward neural network for recognizing brain activitiesFigure 2
Multi-layer feed forward neural network for recognizing brain activities.
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ated hemoglobin and deoxygenated hemoglobin concen-
tration changes. The system operated at three different
wavelengths of 780 nm, 805 nm and 830 nm, emitting an
average power of 3 mW.mm-2. The illuminator and detec-
tor optodes were placed on the scalp. The detector
optodes were fixed at a distance of 3 cm from the illumi-
nator optodes. The optodes were arranged above the hem-
isphere on the subject's head as shown in Fig. 3.

Near-infrared rays leave each illuminator, pass through
the skull and the brain tissue of the cortex and are received
by the detector optodes. The photomultiplier cycles
through all the illuminator-detector pairings to acquire
data at every sampling period. The data were digitized by
the 16-bit analog to digital converter.

Because oxygenated and deoxygenated hemoglobin have
characteristic optical properties in the visible and near-
infrared light range, the change in concentration of these
molecules during neurovascular coupling can be meas-
ured using optical methods By measuring absorption
changes at two (or more) wavelengths, one of which is
more sensitive to oxy-Hb, the other to deoxy-Hb, changes
in the relative concentrations of these chromophores can
be calculated. Using these principles, researchers have
demonstrated that it is possible to assess brain activity
through the intact skull in adult humans [3].

The fNIRs instrument was capable of storing the raw sig-
nals for each of channels, one of which consists of the
intensity values of 3 wavelengths, as well as the derived
values of oxygenated hemoglobin [Ox-Hb], deoxygenated
hemoglobin [Deox-Hb] and total hemoglobin [total-
Hb]= [Ox-Hb] + [Deox-Hb] concentration changes for all
time points in an output file in a pre-specified format.
Under the view of recognition brain activities, we chose
the total hemoglobin [total-Hb] concentration changes to
analysis its functions.

In this work, we investigate 2 tests to recognition brain
activities. Test 1 is implemented with a 32 year old male
doing three tasks, as follow:

Task 1: controlling physical motion of right arm,

Task 2: imagining the motion of right arm,

Task 3: relaxing.

Each of tasks is measured during 3 minutes, by 7 chan-
nels, and sampling frequency 18 Hz.

Test 2 is implemented with a 28 year old male with mis-
sion imagining numerical push on a calculator as Fig. 4.
Each of imagining tasks corresponding to a number is
measured during 1 minute, by 17 channels, and sampling
frequency 10 Hz.

Results and Discussion
Fractal Dimension
The first test acquired 3275 points, in which each 100
point is enough to calculate fractal dimension, Df, called
window index runing along the signals. Computing
results are shown in Fig. 5.

The second test acquired 600 points, in which each 100
point is enough to calculate fractal dimension, Df, called
window index runing along the signals. Computing
results are shown in Fig. 6.

Fig. 5 and Fig. 6 shown that fractal dimension mostly
more over than 1.9 indicating high degree of complexity
of fNIRs signals as well as complexity of brain dynamics
generating the given bio-signals. However these comput-
ing results can not demonstrate difference in each task of
human brain activities. Therefore, we use model combin-
ing Wavelet Transform and Neural Networks to recogniz-
ing brain activities.

Recognition by Wavelet-Neuron Model
In the first test, Wavelet mother is chosen discrete approx-
imation of Meyer wavelet. Level of wavelets decomposi-

Positions of optodes on the subject's headFigure 3
Positions of optodes on the subject's head.
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tion, j, is 3. SNRgain are calculated for each channel and
shown in Table 1.

From Table 1, SNR-gain average is calcutated as SNRgain-
average = 2.10 Multilayer neural network is built with 3
layers. Input layer consists of 7 neurons corresponding to
7 fNIRs channels. 7 neurons are set for hidden layer and 1

Fractal dimension of three fNIRs channels of 3 tasks of the first test corresponding to circle-point line, square-point line, and triangle-point lineFigure 5
Fractal dimension of three fNIRs channels of 3 tasks of the first test corresponding to circle-point line, square-point line, and 
triangle-point line.

An experiment recognizing brain activities imagining numerical push on a calculator, outputs from 0 to 9 corresponding to pushing numbers from 0 to 9Figure 4
An experiment recognizing brain activities imagining numerical push on a calculator, outputs from 0 to 9 corresponding to 
pushing numbers from 0 to 9.
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neuron for output layer. The transfer functions of the hid-
den layer are chosen tagsig-function while the transfer
functions of output neurons are purelin-function, a linear
function, for representation of many different classes, out-
put equals to +1, 0, -1 corresponding to task 1, 2, 3. The
error of Neural training processing shows in Fig. 7, with
mean square error of classification is 9.82e-05 in 200
epochs. The output of neural model indicates separately 3
distinguished tasks in Fig. 8.

In the second test, SNG-gain average is calculated as SNR-
gain-average = 2.97. Multilayer neural network is built
with 3 layers. Input layer consists of 17 neurons corre-
sponding to 17 channels of fNIRs signals. 17 neurons are
set for hidden layer and 1 neuron for output layer. The
transfer functions of the hidden layer are chosen tagsig-
function while the transfer functions of output neurons
are purelin-function, a linear function, for representation
of many different classes, output values from 0 to 9 corre-
spondind to numerical imagining from 0 to 9. The error
of Neural training processing shows in Fig. 9, with mean
square error of classification is 4.79e-04 in 1000 epochs.

The output of neural model indicates separately 10 distin-
guished tasks in Fig. 10.

All two experiments show that classified wavelet-neuron
models obtain the high accuracy. The results determine
advantages of wavelets analysis as preprocessing and neu-
ral networks as classified models.

With many advantages of fNIRs, safe, portable, affordable
and high accuracy of computing pattern recognition. A
Brain-computer interface (BCI) using fNIRs signals will be
developed as an alternate mode of communication and
environmental control. Especially disable patients with
cognitive ability to communicate with their social envi-
ronment can live with a reasonable quality of life over
extended period time.

Conclusion
In this study, we have demonstrated the feasibility of
fNIRs analysis to recognize human brain activities. fNIRs
opens many excellent opportunities to cognition brain
activities and interface to computer as future BCIs. The
limited paper contributes analyzing nonlinear characteris-

Table 1: Signal to noise ratio (SNR) gain of 7 channels and 3 tasks

Total-Hb Ch-1 Ch-2 Ch-3 Ch-4 Ch-5 Ch-6 Ch-7

Task 1 2.7073 2.5748 3.1227 2.8987 0.25172 1.263 0.88898
Task 2 4.7043 1.1575 5.2625 2.2889 0.70114 0.75794 1.1248
Task 3 3.0046 2.2346 3.5706 2.9905 0.30904 1.4218 0.91027

Fractal dimension of 5 fNIRs channels of second imagining test corresponding to pushing number from 0 to 4Figure 6
Fractal dimension of 5 fNIRs channels of second imagining test corresponding to pushing number from 0 to 4.
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tics of fNIRs by Higuchi's fractal dimension, extracting sig-
nal features by wavelet transforms, and recognizing brain
activities by neural network. In future, we will indicate the
potential use of such techniques to online fNIRs-BCI sys-
tems.
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Output of neural network recognizing 10 distinguished tasks of brain activitiesFigure 10
Output of neural network recognizing 10 distinguished tasks 
of brain activities.

Output of neural network recognizing 3 distinguished tasks of brain activitiesFigure 8
Output of neural network recognizing 3 distinguished tasks 
of brain activities.

The error of neural network training processing correspond-ing to 200 epochs of the first experimentFigure 7
The error of neural network training processing correspond-
ing to 200 epochs of the first experiment.

The error of neural network training processing correspond-ing to 1000 epochs of the second experimentFigure 9
The error of neural network training processing correspond-
ing to 1000 epochs of the second experiment.
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