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Abstract
Methods of contemporary physics are increasingly important for biomedical research but, for a
multitude of diverse reasons, most practitioners of biomedicine lack access to a comprehensive
knowledge of these modern methodologies. This paper is an attempt to describe nonlinear
dynamics and its methods in a way that could be read and understood by biomedical professionals
who usually are not trained in advanced mathematics.    After an overview of basic concepts and
vocabulary of nonlinear dynamics, deterministic chaos, and fractals, application of nonlinear
methods of biosignal analysis is discussed.  In particular, five case studies are presented: 1.
Monitoring the depth of anaesthesia and of sedation; 2. Bright Light Therapy and Seasonal Affective
Disorder;  3. Analysis of posturographic signals;  4. Evoked  EEG  and photo-stimulation;  5.
Influence of  electromagnetic  fields generated by cellular phones.  

1. Background
An increasing importance of nonlinear dynamics for bio-
medicine is so evident that it even impressed the Euro-
pean Parliament. EP's report on physiological and
environmental effects of non-ionising electromagnetic
radiation bluntly states:

"It should be noted that difficulties sometimes experi-
enced in attempts to independently replicate certain fre-
quency-specific non-thermal effects are actually to be
expected. For in consequence of the highly non-linear, non-
equilibrium nature of living systems, even the slightest differ-
ences in the physiological state of the biosystems used and
in the conditions obtaining in a particular experiment
can, in consequence of deterministic chaos, assume singu-
lar importance. (...) Future EU-sponsored research should
incorporate the following recommendations: (...) That
systematic investigation be made (...) whether any observed

changes in power spectra are correlated with changes in the
level of deterministic chaos" (cf. [1], italics by the author).

Today's academic curricula still emphasizes mainly the
basics of algebra and 'classical' linear XVIII–XIX century
physics of 'static' systems that are in a state of equilibrium
or close to equilibrium. On the other hand contemporary
sciences as well as technology are heavily based on 'new'
nonlinear physics that, in order to be understood requires
a working knowledge of calculus and advanced mathe-
matics beyond calculus. It is in fact nonlinear dynamics
that applies to systems that are not in equilibrium – from
a single protein macromolecule with intrinsic physical
instability (in scientific literature called Klonowski-
Klonowska conformon [2,3]) and self-oscillating cross-
linked (bio)polymeric material [4,5], to nonlinear dose-
effect relationships in medicine (called hormesis) [6], and
human brain [7]. This article is an attempt to provide a

Published: 5 July 2007

Nonlinear Biomedical Physics 2007, 1:5 doi:10.1186/1753-4631-1-5

Received: 14 March 2007
Accepted: 5 July 2007

This article is available from: http://www.nonlinearbiomedphys.com/content/1/1/5

© 2007 Klonowski; licensee BioMed Central Ltd. 
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), 
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Page 1 of 19
(page number not for citation purposes)

http://www.nonlinearbiomedphys.com/content/1/1/5
http://creativecommons.org/licenses/by/2.0
http://www.biomedcentral.com/
http://www.biomedcentral.com/info/about/charter/


Nonlinear Biomedical Physics 2007, 1:5 http://www.nonlinearbiomedphys.com/content/1/1/5
comprehensive description of nonlinear dynamics in a
way that does not require mathematical sophistication
from the readers. I do hope that the exposition of nonlin-
ear dynamics presented here would be useful to physi-
cians, biologists, social scientists and other professionals
who are involved in diverse fields of today's biomedicine
but have not been specifically trained in advanced mathe-
matics.

2. Fundamental concepts
2.1. Basic definitions
System may be defined as an orderly working totality, a set
of units combined by nature, by science, or by art to form
a whole (cf. [8]). System is not just a set of elements but
includes also interactions between both the system's ele-
ments and with the 'external world'. Interactions may be
static (like rigid mechanical connections e.g. a set of rein-
forced concrete beams linked together to form skeleton
system of a building) or dynamic i.e. through exchange of
mass, energy, electric charge (like molecules of neuro-
transmitters or ion flows through channels in cell mem-
brane) or through exchange of information (through e.g.
electromagnetic fields like cellular phones and communi-
cation satellites in a GMS system or through acoustical
waves like a group of individuals speaking one to
another).

A living organism is an open system, 'pumped' with free
energy from biochemical reactions, in a similar way to a
TV-set being 'pumped' with free energy from electrical
outlet. Electromagnetic fields (EMF) that interact with a
TV-set carry extremely low energy; what EMF do carry is
information that influence the system, so causing that
either meaningful or just noisy images show up at the TV-
screen. We call such effects information interactions (cf.
[3]).

In physics state of a system in a given moment of time is
characterized by values of state variables (at this moment).
The minimum number of independent state variables that
are necessary to characterize the system's state is called the
number of degrees of freedom of the system. If a system has
n degrees of freedom then any state of the system may be
characterized by a point in an n-dimensional space with
appropriately defined coordinates, called the system's
phase space

Process is defined as a series of gradual changes in a system
that succeed one another (cf. [8]). Every process exhibits a
characteristic time, τ, that defines the time scale for this
process. As a consequence, for every process time should
be measured in a form of non-dimensional quantity t/τ,
expressed in units equal τ rather than in 'absolute' units
like seconds or years. In the system's phase space a process
is represented by a series of connected points called trajec-

tory. Attractor is a subset of the system's phase space that
attracts trajectories (i.e. the system tends towards the
states that belong to some attractor). For example, in clas-
sical thermodynamics a closed system tends towards the
equilibrium state while an open system tends towards a
steady state.

Signal is a detectable physical quantity or impulse (as a
voltage, current, magnetic field strength) by which infor-
mation can be transmitted from a given system to other
systems, e.g. to a measuring device (cf. [8]). Before further
analysis a signal is usually sampled with certain sampling
frequency, fs. So, in computer memory each signal is regis-
tered in a form of time series while on computer screen or
on paper it often looks like a continuous function. Signals
generated by a system change with time in accordance
with the processes occurring in the system, e.g. voltage
measured on the scalp (EEG-signal) changes depending
on processes in the brain. Signals generated by body
organs or single cells are called biosignals e.g. brain pro-
duces EEG-signals, heart – ECG-signals, muscles – EMG-
signals. Biosignals may be spontaneous or evoked by some
external stimulus e.g. a flash of light.

Noise is any unwanted signal that interferes with the
desired signal (cf. [8]). Noise may be caused by undesired
processes both in the examined system and in the measur-
ing devices.

2.2. Nonlinear vs. linear
Linearity in science means more or less the same as propor-
tionality or additivity. In classical physics if one applies two
times greater force the body will gain two times greater
acceleration (Newton's second law); if one applies five
times greater voltage difference to the ends of a resistor the
current through that resistor will also be five times greater
(Ohm's law). But it is well known that if the applied force
or the applied voltage would be too high then the body or
the resistor will be destroyed – linearity has its limits.

On the other hand linearity means that interactions
between system's elements are negligible. If, for example,
one mixes noble gases argon and neon, the properties of
the resulting mixture will be a simple combination of
properties of its components because interactions
between atoms of noble gases are negligible. But if one
mixes substances that interact strongly, for example can
undergo chemical reactions with each other, the resulting
new system consisting of reaction products have proper-
ties that cannot be easily determined solely from those of
the initial components (substrates). For example, if one
mixes hydrogen and oxygen in volume proportion 2:1
then a spark is enough and the gaseous mixture is trans-
formed into liquid water of total volume about 1870
times smaller than that of the initial mixture. Such emer-
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gence of new (or emergent) properties is an obvious result
of interactions between system elements. So, nonlinearity
means more or less the same as nonadditivity.

Reductionism, a methodological attitude of explaining
properties of a system through properties of its elements
alone, may work only for linear systems. One cannot
explain properties of water as a simple combination of
properties of hydrogen and oxygen. Similarly, it is unrea-
sonable to try to explain properties of the brain from
properties of neural cells (neurons) alone. The same lack
of plausibility of causal reduction appears to be true in
social systems. For example, a group of several persons
(even of 2 persons as in matrimony) has properties there
are not a simple sum of properties of individuals. A crowd
has some collective properties as well – quantity changes
into a new quality.

Some systems have properties that depend more on the
way how the elements are connected than on what the spe-
cific properties of individual elements are. For example,
gels owe its 'gel-like' properties to the fact that practically
all molecules in the system are connected into one single
network rather than into a set of many big aggregates [9].

In everyday life one often observes hormesis, a nonlinear
dose-effect relationship (Fig. 1) without even noticing this
phenomenon. It is well known that alcohol in large
amount is a poison that can kill via inhibiting some proc-
esses, but in small amounts it acts as a stimulant. The
same applies to effects of caffeine, nicotine, drugs. The
problem is with the adjective 'small' – what for one indi-
vidual is still a small stimulating amount for another may
already be a lethal dose. There is no universal rule or a
threshold between stimulating and poisoning doses.
From our perspective though hormesis is a very common
phenomenon that exemplifies the notion of nonlinearity,
but unfortunately is often forgotten in medical data anal-
ysis,

In medical papers one can often find erroneous data inter-
pretation that combines linearity with a threshold. How-
ever, a thresholdis incompatible with linearity as one can
easily observe from an example of 'linear income tax'
examined in the context of a 'tax-free amount' (Table 1).

2.3. Far from equilibrium vs. equilibrium
Any process to occur needs a difference of some (general-
ized) potential. Thermodynamic equilibrium means a
complete lack of differences between different parts of the
system and, as a consequence, a complete lack of changes
in the system – all processes are stopped.

'Living' states of any system are nonequilibrium states. In
these states some properties (like concentrations, electri-

cal charges, etc.) are unequally distributed, and those dif-
ferences act as driving forces for all processes.
Equilibrium, the unique state when all properties are
equally distributed, is the state of 'death'. It is true not just
for a single cell or an organism. The socio-economical sys-
tem in which there are no inequalities between the people
may not exist for a longer period of time – it decomposes
like a dead organism. If those who had 'invented' commu-
nism knew thermodynamics they would understand that
communistic system would necessarily fail, as we all have
observed.

In the systems being close to equilibrium one can observe
linear processes while in the systems being far from equi-
librium processes are nonlinear. Life appears to be a non-
linear phenomenon that may not be explained solely by
properties of components of living systems. Reductionism
is fundamentally flawed because of emergent properties
which appear in complex systems far from equilibrium.

Even in a single protein macromolecule, due to differ-
ences in time scales of processes involved in protein bio-
synthesis, one may observe intrinsically nonequilibrium
structures called Klonowski-Klonowska conformons (in pro-
teins with short turnover time, cf. [2,3]). Another example
are spatio-temporally organized networks of physico-
chemical processes that may be identified with intracellu-
lar dissipative structures [2], defined generally as the

Example of hormesis – biological response to chemical and physical agentsFigure 1
Example of hormesis – biological response to chemi-
cal and physical agents. Deficiency symptoms are caused 
by deficit of an agent (dose less than D); small doses 
(between D and T) are vital for good health (shaded area), 
doses higher than T cause toxic or other harmful effects. 
Dotted line represents linear no-threshold relationship, solid 
line represents hormetic dose-effect relationship (after [10])
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dynamics organization of matter in space and time kept
far from equilibrium by a continuous dissipation of free
energy; nonequilibrium structures, like sub-cellular sol-
gel dissipative network structures may be built up even of
subunits that taken separately are in thermodynamic
equilibrium (cf. [4,5]).

2.4. Nonstationary vs. stationary
Stationarity of a signal means that the signal, and so the
time series representing this signal, has the same mean
and variance throughout. Stationarity does not mean con-
stancy – stationary signal may be changeable like e.g. volt-
age in alternating current outlets.

Nonstationarity means that signal's statistical characteris-
tics change with time. In statistics nonstationary mean time
series refer to time series whose average or mean value is
not constant, like in time series with trends or seasonali-
ties; nonstationary covariance time series are time series
whose correlation or covariance changes with time (cf.
[11]).

Biosignals are usually nonstationary. For example, EEG-
signal recorded from a scalp electrode is influenced by dif-
ferent deeper brain structures, each 'transmitting' with dif-
ferent and changeable intensity; so, in a fraction of a
second the main source of the registered signal often
moves from one brain structures to another. And if source
of a signal changes with time then the signal is obviously
nonstationary.

Example of stationary and nonstationary signals and their
analysis is given below in 4.3.

2.5. Stochastic vs. deterministic
Deterministic means more or less the same as predictable.
If a system is deterministic one can predict the system's
future states. Deterministic systems are either character-
ized by sufficiently small number of degrees of freedom or
some state variables are of negligible importance com-
pared to those of the greatest importance. For example, in
a system consisting of a mixture of different isotopes there
may be 'quick' isotopes for which characteristic times of

their decay, τ (these isotopes' half-life, τ1/2) is extremely
short comparing with the time of observation Δt, 'slow'
isotopes with τ1/2 of the same order of magnitude as Δt,
and 'crawling' isotopes with τ1/2 much greater than Δt; so,
in a period of time Δt concentration of 'crawling' isotopes
remains practically constant, while concentration of
'quick' isotopes reach very quickly its steady state value
(steady state value is also constant, but it is a dynamic
constancy – the 'inflow' and 'outflow' are equal while
both being non-zero). If one is interested in modelling
this system to predict its state after time of the order of Δt
the system will behave as one with the number of degrees
of freedom reduced to the concentrations of 'slow' iso-
topes. Deterministic systems are modelled by linear ordi-
nary differential equations (ODE, cf. below). But to use a
model of a deterministic system one needs to know
exactly its initial conditions, i.e. the exact values of state
variables at the initial moment t = t0, and exact values of
systems parameters.

Stochastic means nondeterministic, nonpredictable. Stochas-
tic system has a very big number of degrees of freedom of
similar importance. So, the difference between determin-
istic and stochastic system is rather quantitative (number
of equally important degrees of freedom) than qualitative.
Stochastic systems are modelled using probability theory.
Nonpredictivity may also result from practical impossibil-
ity of even indicating all parameters that influence the
process, not to speak about giving exact values of all
parameters and initial conditions, as e.g. in tossing a coin.
In colloquial speech, stochastic systems used also to be
called chaotic.

3. Nonlinear dynamics, deterministic chaos, 
fractals
3.1. Sensitivity to initial conditions
Nonlinear dynamics is the theory of nonlinear systems and
processes, those where result is not proportional to the
cause. Everybody knows situations when even a very small
difference in applied force causes completely different
results. Nonlinear dynamics helps us to study and to gen-
eralize such cases. However, it often needs much more

Table 1: Example of 'linear' income tax with a threshold – everybody pays the same percentage (here 25 %) of the income exceeding 
tax-exempted amount ('threshold', here 10.000)

Without threshold With threshold 10 000

Income Tax to be paid % of income Tax to be paid % of income

5 000 1 250 25 0 0
10 000 2 500 25 0 0
15 000 3 750 25 1 250 8.33
20 000 5 000 25 2 500 12.50
50 000 12 500 25 10 000 20.00
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advanced mathematics than in the case of classical linear
dynamics.

Nonlinear dynamics includes theory of deterministic
chaos. Chaotic systems behave like there were stochastic but
in fact they are deterministic. They show predictability in
a short-time-scale but non-predictability in a long-time
scale due to extremely high sensitivity to initial conditions
and to system's parameters (cf. below).

Imagine a train on a track that leads to a railway station.
Before the station there is an old fashion mechanical
points (switch) and the single track splits into two, so that
at the platform there are two parallel tracks. Crossing
attendant moves the switch lever and depending on the
position of this lever heavy train pulls on one track or on
the other; when the train leaves the station two tracks run
parallel for some distance but then they diverge without
any further connection and one leads to London while the
other leads to Rome. A small change (moving of a switch
lever) at certain moment causes very large difference in
trajectories of the train in the subsequent moments.

3.2. We integrate differential equations without even 
knowing it
Surprisingly, we all integrate differential equations. We
often are like a Monsieur Jourdain from Moliere's "Le
Bourgeois Gentilhomme" who said (II.iv): "Good
heaven! For more than forty years I have been speaking
prose without knowing it."

Ordinary differential equation (ODE) of the first order that
circumscribes dependence of the velocity of changing of
state variable x with time t

dx/dt = v(t)

where dx/dt is the derivative of state variable x over time t
and v(t) is a function of t, needs to be integrated to obtain
x(t), i.e. the dependence on time of the state variable itself.
In a special case when the velocity v is constant equation
(1) can easily be integrated

x(t) = v·t + x(0)

where x(0) is the initial condition – the value of the state
variable x at the moment t = 0. But in such simple cases
one does not need to know theory of differential equa-
tions. Everybody can easily calculate that if at 7:30 a car
starts from the place already 100 km from the beginning
of the journey and moves with constant average velocity
of 90 km/h then at 9:00 it will be 235 km from the starting
point.

3.3. Example of deterministic chaos
For systems with several degrees of freedom one may write
ODE like (1) for each state variable. Usually right hand
sides of such equations do not depend directly on time
but are functions of the state variables; if right hand sides
are nonlinear functions, i.e. include products of different
state variables and/or single state variables squared or in
higher powers multiplied by some numbers (parameters),
they are called quasilinear ordinary differential equations
(QLODE). Dynamical system may be modelled by system
(in mathematical sense) of QLODEs, i.e. a set of equa-
tions that have to be solved all together.

If to model a system one needs three or more QLODEs
this system may show deterministic chaos i.e. extremely
high sensitivity to initial conditions and to system's
parameters. As an example let us consider so called Lorenz
equations (cf. [12]):

dx/dt = -ax + ay

dy/dt = bx - y - xz

dz/dt = -cz + xy

with two sets of parameters:

a = 10; b = 28; c = (8/3)

a = 10; b = 28; c = (8008/3000)

and three sets of initial conditions:

x(0) = 0.999; y(0) = 0.999; z(0) = 0.999

x(0) = 1.000; y(0) = 1.000; z(0) = 1.000

x(0) = 1.001; y(0) = 1.001; z(0) = 1.001

The first surprise is that the results show very irregular
behavior while inspecting equations (3) no one could
directly predict such a strange behavior of the solution –
because of the simplicity of the equations one would
rather expect smooth, regular behavior. So, anybody using
such models (in chemistry, biology, engineering, eco-
nomics, business, and humanities) should be aware of
possible pitfalls hidden in even simple QLODEs.

Fig. 2a shows one 'face' of behavior of chaotic system – its
extreme sensitivity to small changes in system parame-
ters. When parameters of Lorenz equations (3) are very
slightly changed (from (4a) to (4b), that is only one of
three parameters, c, is increased one tenth of a per cent,
while the initial conditions remain unchanged, equal
(5b)) one observes that at the beginning two solutions
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Example of deterministic chaos – sensitivity of solution of Lorenz equations (3) illustrated by dependence of x on t; state varia-bles y and z show similar chaotic behaviorFigure 2
Example of deterministic chaos – sensitivity of solution of Lorenz equations (3) illustrated by dependence of x on t; 
state variables y and z show similar chaotic behavior. a. sensitivity to system parameters for initial conditions (5a), solutions for 
parameters (4a) (crosses) and (4b) (squares), respectively; b. sensitivity to initial conditions for system parameters (4a), solu-
tions for initial conditions (5a) (crosses), (5b) (squares), (5c) (diamonds) respectively.

a.

b. 
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remain practically identical; then, quite suddenly an
unpredictable very big difference in solutions does
appear.

Another 'face' of the behavior of chaotic system – its
extreme sensitivity to small changes in initial condi-
tions – is shown on Fig. 2b. When the system parameters
(4) remain unchanged (equal (4a)) but initial conditions
are changed from (5b) to (5a) or (5c), i.e. one tenth of a
per cent, again at the beginning three solutions remain
practically identical, and then quite suddenly an unpre-
dictable very big differences in solutions does appear.

So, even a very small change of initial conditions and/or
of system parameters may bring dramatic changes in a
long-time behavior of the solution of equations (3). The
obtained results are not some artifacts introduced by
numerical integration, but are really the inherent proper-
ties of the considered QLODEs. If such simple set of equa-
tions shows such a strange behavior of solutions one can
imagine what is possible with models often containing
dozens of equations with dozens of parameters. And one
should remember that in a computer real numbers like
(8/3) are always represented with some approximation,
often out of control of the user.

Chaotic systems are inherently connected with fractals
and fractal geometry. When represented in a phase space
chaotic systems shows so called strange attractors –
attracting subsets of dimension expressed by a non-inte-
ger number (cf. [13]).

Because living systems are far from equilibrium inherently
nonlinear systems nonlinear models of living systems and
nonlinear methods of biosignals' analysis are much more
appropriate than 'classical' linear methods.

4. Nonlinear methods of biosignal analysis
4.1. Shortcomings of linear methods of biosignal analysis
Spectral methods such as Fast Fourier Transform (FFT)
may give very misleading results. E.g. if in a measured sig-
nal one observes regular waves of frequency 12 Hz with
amplitude modulated with frequency 1 Hz then Fourier
decomposition of this signal leads to two components,
each of amplitude equal half of that of the analyzed sig-
nal, with frequencies 11 Hz and 13 Hz respectively:

[2cos(2π·t)]sin(2π·12t) = sin(2π·11t) + sin(2π·13t)

So, the basic frequency of the analyzed signal (12 Hz)
does not appear in the Fourier spectrum.

In Fourier analysis (FFT) vocabulary (i.e. the set of basic
functions analyzed signals are decomposed onto linear

combinations of) is limited to the set of sines and cosines
of different frequencies.

In Wavelet Transform (WT) vocabulary may be much big-
ger, consisting e.g. of Gabor's functions, i.e. sines modu-
lated by Gauss functions, depending not only on
frequencies but also characterized by different time scales
and shifted in time.

In Matching Pursuit (MP) method vocabulary includes
generalized functions like Dirac's δ-function.

So, WT and MP have better accuracy but at the same time
show much bigger ambiguity in signal decomposition.

Methods borrowed from nonlinear dynamics and deter-
ministic chaos theory, in particular fractal and symbolic
methods of analysis in time domain, are well suited for
real-time biomedical applications.

4.2. Linear methods are rooted in medical tradition, 
nonlinear methods are not
Living systems are complex, nonlinear, and operate far
from equilibrium. That is why nonlinear methods of con-
temporary physics are much more appropriate to model
and analyse living systems and biosignals generated by
them than linear methods traditionally used in medicine,
like FFT or WT. But spectral methods are still widely used
just because of tradition. PCs with FFT implemented
already in EEG-data acquisition software were quickly
accepted in clinical environment because FFT gives physi-
cians exactly what they have been using – spectrum of
waves with frequencies up to 35–45 Hz. But no generators
of waves in different 'bands' observed in EEG have ever
been localized in the brain, so spectral characteristics are
just a way of description of EEG-signals.

While it is obvious that the higher is the frequency of a
wave the more information it may carry and neuroscien-
tists did find that some tasks, like e.g. face perception,
elicit frequencies up to 250 Hz when the stimuli are proc-
essed by human brains [14] frequencies exceeding
roughly 70–90 Hz are filtered out by EEG-data acquisition
systems hardware, and so are very low frequencies smaller
than 0.5 Hz. From such filtered signals, according to
Nyquist Theorem, one cannot recover Fourier compo-
nents with frequencies higher than 35–40 Hz. When EEG
was registered on a moving paper tape (1.5, 3.0, or 6.0
cm/sec depending on the system) doctors could count
number of pen sways (wave ridges) between two vertical
lines 3 cm away; however, when that number exceeded
25–30 it was nearly impossible to distinguish the signal
from noise because of the very thickness of a line drawn
by the pen; on the other hand, frequencies below 3.0 Hz
were also practically imperceptible by a naked eye, while
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FFT applied to similar stationary (upper a.) and nonstationary (upper b.) signals gives dramatically different results (bottom), while application of Higuchi's algorithm gives quite similar values of average fractal dimension, Df, of both signalsFigure 3
FFT applied to similar stationary (upper a.) and nonstationary (upper b.) signals gives dramatically different results 
(bottom), while application of Higuchi's algorithm gives quite similar values of average fractal dimension, Df, of both signals.

                                        a.                                                                         b. 
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waves with frequencies 8–12 Hz ('alpha waves') were
most easily noticed. And this tradition is still alive despite
the fact that EEG-signals are now registered numerically
by computers.

The time series obtained from biological systems such as
human brain are invariably nonstationary because of dif-
ferent time scales involved in the dynamical process;
dynamical parameters are sensitive to the time scales and
hence in the study of brain one must identify all relevant
time scales involved in the process to get an insight in the
working of brain [15]. Biosignals generated by living sys-
tems are '3N'– Non-stationary, Non-linear, Noisy. Nonlin-
ear methods that assess signal complexity, like Higuchi's
fractal dimension method, may be used for EEG (and
other biosignals) analysis no matter if the signal itself is
chaotic, deterministic, or stochastic, also when it is non-
stationary and noisy. But still nonlinear methods are used
only in research and not in everyday clinical practice
because these methods are not yet rooted in medical tra-
dition. While linear methods, as we have shown above,
have serious drawbacks, nonlinear methods may be used

to analyse changes in EEG-activity due to anaesthesia or to
the applied chemo-, photo- or magneto-therapy, or due to
changes of physiological state, e.g. because of falling
asleep and passing through subsequent sleep stages.

4.3. Higuchi's fractal dimension in time domain
As an example of nonlinear methods we take Higuchi's
fractal dimension in time domain [16]. It is, in fact, fractal
dimension of the curve representing amplitude of the sig-
nal under consideration on a plane as a function of time.
So, it is always between 1 and 2, since as everybody knows
a simple curve has dimension equal 1 and a plane has
dimension equal 2. Imagine a classical registration device
that records a signal like EEG by drawing with a pen a
curve on a moving paper tape. Such a curve may in some
degree fill out the plane (here the tape surface); if the
device registers pure noise the plane will be filled out
(smeared) completely. Higuchi's fractal dimension, Df, or
rather its fractional part over 1, measures the 'degree of
filling out' the plane by the curve, that is at the same time
a measure of complexity of the signal represented by this

'Epileptic seizures' in 'economic organism'Figure 4
'Epileptic seizures' in 'economic organism'. a. EEG-epoch showing an epileptic seizure (top) and its fractal dimension 
(bottom); b. Dow Jones index from the period of 'big crash' (top) and its fractal dimension (bottom).

                           a.                                                                                      b. 
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curve. Higuchi's fractal dimension should not be confused
with fractal dimension of an attractor in the phase space.

Df   may be calculated in a time window containing so few
as ca. 100 data points and the window can be moved
along the signal, so giving substantial compression of
data. Using moving window one obtains running fractal
dimension Df(t) that shows changes of the signal's com-
plexity in time. Higher values of Df correspond to presence
of higher frequencies in the signal's Fourier spectrum (cf.
[17]). While running fractal dimension may be used to
characterize short-lasting phenomena like eye blinking,
the mean fractal dimension value averaged over longer
period of time also serves as a meaningful characteristic of
studied biosignals. Moreover, while linear methods, like
FFT or WT, work properly only for stationary signals,
Higuchi's methods may be used to characterize nonsta-
tionary signals too (Fig. 3) – signals shown at the upper

part look slightly different and their mean fractal dimen-
sions are also only slightly different but their power spec-
tra (the lower part) are immensely different; it is so
because the second signal is nonstationary.

Signal presented in Fig. 3a upper part was 'synthesized' by
adding together 5 simple sinusoidal signals of different
frequencies; when this artificial signal is analyzed using
FFT we can clearly see in its spectrum those 5 components
(Fig. 3a bottom). Signal presented in Fig. 3b upper part
was obtained from this shown on Fig. 3a by repeating sev-
eral times the following procedure: 1. choosing randomly
a short signal epoch; 2. removing the chosen epoch; 3.
'stitching together' two remaining parts of the signal. In
the place of such a stitching 'jump' of signal's amplitude
usually arises. This procedure is in fact very similar to arti-
facting of EEG-signal. One can observe that after such a
procedure it is not possible to see in the signal's spectrum

Measuring the depth of sedation (cf. [19]) – fractal and symbolic dynamics methods of EEG analysis give similar results as BIS methodFigure 5
Measuring the depth of sedation (cf. [19]) – fractal and symbolic dynamics methods of EEG analysis give simi-
lar results as BIS method. In this case sedation has been employed to secure adequate comfort for 65-year-old male patient 
during long, unpleasant procedure (colonoscopy with polypectomy). Sedation has been controlled according to the BIS (target 
BIS value between 60 and 80) with intermittent boluses of propofol. At 16. and 27. minutes of the study sedation was lightened 
to level 3 in OAA/S score. Record showed that at those moments (Df - 1)*100 rose rapidly to rich the highest value. BIS 
increased only once (at 27. minute) while at 16. minute remained unchanged. Awakening can be predicted by rise of the (Df - 
1)*100 towards its highest value. Exact dosage and timing of drugs administration are also shown.
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the 5 components of which the initial stationary signal
was composed (Fig. 3b bottom). So, despite the fact that
a raw EEG-signal is nonstationary, artifacting usually
introduces additional nonstationarity and FFT-analysis of
'artifact-free' EEG may lead to very erroneous results. In
most cases application of nonlinear methods like
Higuchi's fractal dimension analysis are much more
appropriate.

It is important to stress that Higuchi's fractal dimension
does not show what is the 'real character' of the system
that generated given biosignal – is it deterministic, cha-
otic, or stochastic. The method may be applied to any sig-
nal and should be treated as a tool to demonstrate relative

changes in the signals, in particular in the same signal of
the given person 'before' and 'after' (for example EEG of
the patient before and after administration of a drug,
before and after applying photo-stimulation etc.) or the
same signal in different physiological states (e.g. in wake-
fulness and different sleep stages).

Transforming original biosignal into running Higuchi's
fractal dimension Df(t) allows to reduce the amount of
data without losing diagnostically important information
– changes in Df(t) reflect changes in brain activity. Because
Df(t) compresses long epochs of raw data into much
smaller Df-epochs, such that the eyes can take in the whole
picture at once instead of viewing the original record 'page

Table 2: FD-ratio and HDRS for SAD patients before and after Bright Light Therapy

Patient Δo Δc Δo/Δc HDRS 
(before)

Δo Δc Δo/Δc HDRS 
(after)

1 0.78 0.82 0.9 high 0.75 0.80 0.94 low
2 0.26 0.41 0.6 high 0.47 0.47 1.0 low
3 0.17 0.42 0.4 high 0.37 0.25 1.5 low
4 0.40 0.56 0.7 high 0.17 0.17 1.0 low
5 0.68 0.75 0.9 high 0.20 0.20 1.0 low
6 0.73 0.55 1.3 high 0.54 0.51 1.1 low
7 0.53 0.64 0.8 high 0.42 0.41 1.0 low
8 0.37 0.48 0.8 high 0.26 0.25 1.0 low
9 0.39 0.56 0.7 high 0.46 0.41 1.1 low
10 0.22 0.59 0.4 high 0.36 0.36 1.1 low

Fractal dimension of 19 seconds EEG-epoch (P4-O2) with eyes-opening (in 4. s.) and eyes-closing (in 15. s.)Figure 6
Fractal dimension of 19 seconds EEG-epoch (P4-O2) with eyes-opening (in 4. s.) and eyes-closing (in 15. s.).
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after page', it may make easier for doctors to choose which
fragments of record are important and should eventually
be further checked using other methods.

Higuchi's method may also reveal quite unexpected simi-
larities in very different systems. For example, analysis of
a 'signal' generated by an 'economic organism' – time
series of Dow Jones index during the period of 'big crash'
– shows very similar image of changes in Higuchi's fractal
dimension as EEG-signal during epileptic seizure (Fig. 4,
cf. [18]).

5. Nonlinear Biomedical Physics – examples of 
applications
5.1. Monitoring the depth of anaesthesia and of sedation
Brain electrical activity in patients was measured continu-
ously with an A-2000 BIS Monitor (software version: XP,
Aspect Medical Systems, Newton, MA, USA) and bispec-
tral index (BIS) was recorded every 10 seconds. The bis-
pectral index is commonly accepted as a measure of
hypnosis during anaesthesia, but the algorithms the BIS
Monitor uses are not in public domain. In addition, depth
of anaesthesia was continuously tested and classified by a
specialist-anaesthesiologist to six OAA/S (Observer's
Assessment of Alertness and Sedation) levels; patients
were judged to be conscious if the OAA/S score was
between 3 – 5 and unconscious if the OAA/S score was
less then 3 (cf. [19]).

We analyzed EEG-signals post-operatively. The results
were averaged every 10 s for epochs 30 s long. Since 1 ≤ Df
≤ 2 the fractal dimension value has been presented as (Df

- 1) . 100 to adjust the scale for better comparison with BIS
(Fig. 5). We demonstrated that the fractal dimension cor-
responds to the depth of anaesthesia and we applied for a
patent for this new method of anaesthesia monitoring. In
addition we have used a new symbolic dynamics method
to calculate another measure of the depth of anaesthesia,
called SDI ([21], cf. also [22]), but because this methods
needs more complicated explanations we will not present
this method here.

5.2. Bright Light Therapy and Seasonal Affective Disorder
Therapy of some pathological states may be based on
techniques controlling chaos in the brain. Chaos in the
brain may be controlled using different chemicals or using
physical fields. It is phototherapy, that is the therapy using
visible light, which is applied in patients with Seasonal
Affective Disorder (SAD). As day light began noticeably
decreasing in the fall many people may develop SAD.
They feel very sedentary, and often sluggish. Physical
activity diminishes and hypersomnia can develop. People
suffering from SAD experience these and other symptoms
to such a degree that they feel unable to function nor-
mally. About five times as many people may suffer from
"winter doldrums," a sub-clinical level of SAD, than from
a level of clinical severity. Toward spring with lengthening
daylight hours, the number of affected people began to
decline.

The most established treatment for SAD is so called Bright
Light Therapy (BLT) which involves exposure to intense
levels of white light (10,000 lux illumination) under con-
trolled conditions. Its therapeutic mechanism is still

Fractal dimension of EEG-signal for 80 sec. epochs (channel P3-O1) for a patient with SADFigure 7
Fractal dimension of EEG-signal for 80 sec. epochs (channel P3-O1) for a patient with SAD. a. before BLT; b. 
after BLT.
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unclear. We have searched for such quantitative character-
istics of EEG in patients with SAD which may be relatively
easily calculated, may help doctors in assessing therapy
impact on the patient, and eventually help in diagnostics.

We analyzed EEG from 10 SAD patients. The data were
collected before and after BLT. The second recording was
provided 2 weeks after the treatment. For every patients
we analyzed epochs of duration approx. 20 second start-
ing about 5 seconds before eyes-opening and ending
about 5 seconds after eyes-closing. For medical assess-
ment of the patients the psychological Hamilton Depres-
sion Rating Scale (HDRS) was used. We have
demonstrated using fractal dimension method that in
patients suffering of SAD the 'relaxation' of Df after eyes-
opening/eyes-closing is much slower than in healthy sub-
jects [23]. When an eyes-opening event occurs fractal
dimension of EEG-signal grows from 1.1–1.3 to 1.5–1.6
in the occipital channels and even to 1.8 in the frontal
channels – this increase is denoted Δo; when eyes remain
open fractal dimension diminishes, to rise again when an
eyes-closing event occurs; when eyes remain closed, it
diminishes again – this decrease is denoted Δc (Fig. 6 and
Table 2). We define Δo/Δc as open-/closed-eyes fractal dimen-
sion ratio (FD-ratio). We observed that in EEG of healthy
subjects this ratio is close to 1. For SAD patients the FD-
ratio was compared with HDRS before and after BLT
(Table 2).

For patients with high HDRS FD-ratio differs from 1.0; for
patients for whom HDRS diminished after phototherapy
FD-ratio 'normalizes' – it becomes closer to1.0. The differ-
ences between the columns 4 and 8 are statistically signif-
icant. So, FD-ratio may be used for assessment of BLT
results in patients with SAD since it highly correlates with
patients' assessment based on HDRS (Table 2). The
method is easy to implement because it needs only short
one channel EEG epochs and it is also quick – analyzing
of a 20 seconds epoch requires only few seconds.

We have also demonstrated that in patients suffering of
SAD mean Df  of EEG-signal is smaller than in healthy sub-
jects. BLT makes the mean value of Df   in those suffering
with SAD to increase (Fig. 7, cf. [24]).

5.3. Analysis of posturographic signals
Stability of the upright posture is defined by a position of
the center-of-mass (COM) in relation to the base of sup-
port. The position is approximated in static condition by
the center of foot pressure (COP). Experimental data in
posturography typically consist of x (anteroposterior, AP)
and y (mediolateral, ML) components of COP and COM
measurements. Analysis of complex oscillations exhibited
by COM and COP may provide better understanding of
postural control. In particular, the comparison of COP
and COM displacements during quiet stance in elderly
subjects while standing with eyes open and eyes closed

Example of COM (a.) and COP (b.) signals recorded simultaneously in a subject 74 years old during quiet stance in a 2-minutes trial; displacements measured in millimetersFigure 8
Example of COM (a.) and COP (b.) signals recorded simultaneously in a subject 74 years old during quiet stance in a 
2-minutes trial; displacements measured in millimeters.

                                 a.                                                                                  b. 
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can be used to evaluate differences in postural stability
(Fig. 8).

The body sway of 12 healthy elderly subjects (mean age
71.5 ± 3.6 years) was recorded during quiet stance; sub-
jects were instructed to stand barefoot in a comfortable
stance. The task was performed in two experimental con-
ditions : with eyes open and eyes closed [25]. The postural
sway was assessed by measuring COP and COM signals
that were registered in the form of time series. Fractal anal-
ysis of data was applied for the evaluation of postural con-
trol system in these subjects (Fig. 9).

Higuchi's fractal dimensions of COM displacement sig-
nals were significantly smaller than these of COP. Eyes
closure results in an increase of the postural sway, accom-
panied by an increase of fractal dimension – elimination
of the visual feedback univocally causes increased chaos
in COP. Higher fractal dimension in the AP direction indi-
cates higher tendency for instability in this direction.

In our studies validity of the method was confirmed by
comparing two major posturographic signals: COP and
COM. It is well documented that postural stability
declines with age; this decline seems to be accompanied

by an increase of chaos in the postural signals. We postu-
late that COP signal in the aged is more chaotic.

Higuchi's fractal dimension method allows reliable evalu-
ation of postural stability changes. It is useful and sensi-
tive in evaluation of age-related decline of the postural
stability and may also be useful for evaluation of patho-
logical postural stability changes.

5.4. Evoked EEG and photo-stimulation
Higuchi's fractal dimension may also be used for analysis
of biosignals evoked by external stimuli, e.g. of EEG
evoked by photo-stimulation. Photo-stimulation is per-
formed in routine EEG-examinations. It consists of two
sequences, the first in increasing frequency order (from 3
Hz to 27 Hz every 3 Hz), and the second in decreasing fre-
quency order. Each stimulus consists of light flashing for
5 seconds with given frequency; there is one-second break
between subsequent stimuli. Fig. 10. shows fractal dimen-
sion of evoked EEG-signal recorded on T6-O2 channel in
a healthy subject [26]. One can notice clear dependence of
fractal dimension on frequency of photo-stimulation with
the maximum for 18 Hz. Higher frequencies cause more
rapid changes in fractal dimension value than lower fre-
quencies. In power spectra of the evoked EEG one cannot
notice practically any relative differences for various fre-

Fractal dimensions (mean values with standard deviation bars) of COM (a.) and COP (b.) signals in the elderly subjects during quiet stance with eyes open (EO) and eyes closed (EC)Figure 9
Fractal dimensions (mean values with standard deviation bars) of COM (a.) and COP (b.) signals in the elderly 
subjects during quiet stance with eyes open (EO) and eyes closed (EC); AP – for anteroposterior displacement; ML – for medi-
olateral displacement.

                                       a.                                                                                  b. 
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quencies of stimulation that are so clearly noticeable in
fractal dimension [26]. Therefore, the fractal dimension is
more revealing measure of the phenomenon.

5.5. Influence of electromagnetic fields generated by 
cellular phones
Assessing information effects of electromagnetic fields on
living organism is much more complicated than that of
energetic (thermal) effects. Exposition to EMF of identical
parameters may cause very different reactions in different
persons; even reactions of the same person may differ
depending on the person's psycho-physiological state.

With wider spreading of cellular phones it becomes more
and more obvious that EMF generated by these phones
may have rather adverse effect on users' health [26]. Now
companies offer devices that are said to level down such
adverse effects, so called neutralising protective devices,
NPD. While testing such an NPD and using classical spec-
tral methods of analysis Spanish scientists found in all

tested persons statistically significant differences in spec-
tral power of slow EEG-waves (delta and theta) as com-
pared with the power of the same waves in basal EEG (i.e.
when the cellular phone was 'off'), while when the phone
used was equipped with the NPD these differences were
much lower [27].

Analysing the same data while using methods of nonlin-
ear dynamics, in particular Higuchi's fractal dimension
method, only in 1 out of 8 tested persons we found clear
differences in EEG-signals recorded when the person used
cellular phone without the screening device, NPD (sin), as
compared with EEG recordings for the same person when
the cellular was 'off' (basal), or while using the phone
equipped with the tested NPD (con). Only for this person
running Higuchi's fractal dimension, Df, of EEG signals
shows changes characteristic to sensitivity to electromag-
netic fields (cf. [30]) (Fig. 11).

Fractal dimension at T6-O2 channel during photo-stimulation of a healthy subjectFigure 10
Fractal dimension at T6-O2 channel during photo-stimulation of a healthy subject.

6.0 6.5 7.0 7.5 8.0 8.5 9.0 9.5 10.0
1.0

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

2.0

photostimulation
decreasing
frequency

increasing
frequency

start end

21
24

27

18 Hz18 Hz  T6O2

D
f

time [min]
Page 15 of 19
(page number not for citation purposes)



Nonlinear Biomedical Physics 2007, 1:5 http://www.nonlinearbiomedphys.com/content/1/1/5
About 15% of population may belong to a high-risk (hyper-
sensitive) group of users of cellular phones (at least of cer-
tain models). Proposed method may serve for quick and
easy assessment of individual susceptibility to EMF used in
mobile communication as well as for testing of different
cellular phones models for their certification by the appro-
priate institutions.

Conclusion
Until recently quantitative computerized EEG-signal anal-
ysis was based primarily on linear theory. But develop-
ments in nonlinear dynamics and deterministic chaos
theory have considerably altered our perception and anal-

ysis of many complex systems, including the brain. Addi-
tional information extracted from EEG by methods of
nonlinear analysis may increase the sensitivity of electro-
physiological methods. Quantitative descriptors of EEG-
signal adapted from nonlinear dynamics (information
dimension, correlation dimension, Lyapunov exponents
etc.) enable better assessment of various spontaneous or
evoked, normal and pathological functional states of the
brain. But to compute above mentioned chaotic descrip-
tors (quantifiers) it is necessary to reconstruct from raw
EEG-data astrange attractor in multi-dimensional phase
space. This takes relatively long time, needs high comput-
ing power and the results are difficult to comprehend for

Higuchi's fractal dimension of 300 sec. long epochs of EEG-signalsFigure 11
Higuchi's fractal dimension of 300 sec. long epochs of EEG-signals. a. for a person who does not show sensitivity to 
EMF; b. for a person (hyper)sensitive to EMF; basal – phone at place but not in use; sin – in use, without NPD; con – in use, 
with NPD; registered on 4 channels (respectively, in each column upside down): T6-O2; T4-T6; F8-T4; Fp2-F8 (from back to 
front of the head).

                     basal                                                  sin                                                       con      

-50 0 50 1 00 1 50 2 00 250 300 350
1 .0
1 .1
1 .2
1 .3
1 .4
1 .5
1 .6
1 .7
1 .8
1 .9
2 .0

A

B

1 .0
1 .1
1 .2
1 .3
1 .4
1 .5
1 .6
1 .7
1 .8
1 .9
2 .0

C

1 .0
1 .1
1 .2
1 .3
1 .4
1 .5
1 .6
1 .7
1 .8
1 .9
2 .0

D

1 .0
1 .1
1 .2
1 .3
1 .4
1 .5
1 .6
1 .7
1 .8
1 .9
2 .0

E

   
0 5 0 1 0 0 1 5 0 2 00 2 5 0 3 0 0

1 .0
1 .1
1 .2
1 .3
1 .4
1 .5
1 .6
1 .7
1 .8
1 .9
2 .0

A

B

1 .0
1 .1
1 .2
1 .3
1 .4
1 .5
1 .6
1 .7
1 .8
1 .9
2 .0

C

1 .0
1 .1
1 .2
1 .3
1 .4
1 .5
1 .6
1 .7
1 .8
1 .9
2 .0

D

1 .0
1 .1
1 .2
1 .3
1 .4
1 .5
1 .6
1 .7
1 .8
1 .9
2 .0

E

    
0 50 1 00 1 50 20 0 25 0 3 00

1 .0
1 .1
1 .2
1 .3
1 .4
1 .5
1 .6
1 .7
1 .8
1 .9
2 .0

A

B

1 .0
1 .1
1 .2
1 .3
1 .4
1 .5
1 .6
1 .7
1 .8
1 .9
2 .0

C

1 .0
1 .1
1 .2
1 .3
1 .4
1 .5
1 .6
1 .7
1 .8
1 .9
2 .0

D

1 .0
1 .1
1 .2
1 .3
1 .4
1 .5
1 .6
1 .7
1 .8
1 .9
2 .0

E

                                              a.                       

0 50 100 150 2 00 25 0 30 0 35 0
1 .0
1 .1
1 .2
1 .3
1 .4
1 .5
1 .6
1 .7
1 .8
1 .9
2 .0

A

P

1 .0
1 .1
1 .2
1 .3
1 .4
1 .5
1 .6
1 .7
1 .8
1 .9
2 .0

Q

1 .0
1 .1
1 .2
1 .3
1 .4
1 .5
1 .6
1 .7
1 .8
1 .9
2 .0

R

1 .0
1 .1
1 .2
1 .3
1 .4
1 .5
1 .6
1 .7
1 .8
1 .9
2 .0

S

    
0 50 1 00 1 5 0 20 0 2 5 0 30 0 3 5 0

1 .0
1 .1
1 .2
1 .3
1 .4
1 .5
1 .6
1 .7
1 .8
1 .9
2 .0

A

P

1 .0
1 .1
1 .2
1 .3
1 .4
1 .5
1 .6
1 .7
1 .8
1 .9
2 .0

Q

1 .0
1 .1
1 .2
1 .3
1 .4
1 .5
1 .6
1 .7
1 .8
1 .9
2 .0

R

1 .0
1 .1
1 .2
1 .3
1 .4
1 .5
1 .6
1 .7
1 .8
1 .9
2 .0

S

   
-5 0 0 50 1 00 1 50 20 0 2 50 30 0 35 0

1 .0
1 .1
1 .2
1 .3
1 .4
1 .5
1 .6
1 .7
1 .8
1 .9
2 .0

A

P

1 .0
1 .1
1 .2
1 .3
1 .4
1 .5
1 .6
1 .7
1 .8
1 .9
2 .0

Q

1 .0
1 .1
1 .2
1 .3
1 .4
1 .5
1 .6
1 .7
1 .8
1 .9
2 .0

R

1 .0
1 .1
1 .2
1 .3
1 .4
1 .5
1 .6
1 .7
1 .8
1 .9
2 .0

S

b. 
Page 16 of 19
(page number not for citation purposes)



Nonlinear Biomedical Physics 2007, 1:5 http://www.nonlinearbiomedphys.com/content/1/1/5
most of clinicians. On the other hand, analysis of
Higuchi's fractal dimension does not require preliminary
reconstruction of the phase space, is much quicker and
more intuitive to apply.

Deterministic chaos could be regarded as a healthy flexi-
bility of the human brain necessary for correct neuronal
operations. Different functional states of the brain are
probably governed by different degrees of complexity.
Fractal dimension measures degree of complexity of EEG-
signal, which reflects complexity of the underlying brain
dynamics.

We have successfully applied running Higuchi's fractal
dimension method for several other applications, like
analysis of biosignals registered during sleep for sleep
staging (both EEG-signals [31,32] and HRV-signals [33]),
for vigilance (wakefulness) monitoring (cf. [22]), as well
as for image analysis, e.g. for quality control of nanosen-
sors' surfaces [34], and for SEM image analysis for rough-
ness assessment of implant materials [35]. We are
exploring and developing other nonlinear methods, in
particular symbolic analysis methods (cf. [21,22]). Non-
linear dynamics methods may find application also in
psychophysiology [36].

Our world is not governed by simple linear laws most of
us were taught at school. If one man digs a ditch in one
hour it does not mean that 60 men will dig the same ditch
in one minute – this is obvious for everybody, even for
those who do not know contemporary physics and math-
ematics. What in physics is called nonlinearity it is just stat-
ing the fact that elements forming a system do not act
independently one from another – in the example above
the system consists of one ditch and 60 men whose work
is restricted by the size of the ditch. In biology and medi-
cine two plus two often does not make four [37] – it is
well known that the effect of a drug is not just simply pro-
portional to its dose and interactions of different drugs are
also extremely important. Chaos is revolutionary in that
the overall approach requires us to adopt a different para-
digm which, at times, may move us away from linear
methods of data analysis.

Appendix
Higuchi's fractal dimension algorithm
Higuchi's algorithm (cf. [16]) calculates fractal dimension
of a time series directly in the time domain. It is based on
a measure of length, L(k), of the curve that represents the
considered time series while using a segment of k samples
as a unit. If L(k) scales like

L(k) ~ k-Df

the curve is said to show fractal dimension Df   because a
simple curve has dimension equal 1 and a plane has
dimension equal 2 value of Df  is always between 1 (for a
simple curve) and 2 (for a curve which nearly fills out the
whole plane). Df  measures complexity of the curve and so
of the time series this curve represents on a graph.

From a given time series: X(1), X(2),...,X(N) the algo-
rithm constructs k new time series:

Xk
m: X(m), X(m + k), X(m + 2k),...,X(m + int((N-m)/k) · k) 

for m = 1,2,...,k

where m – initial time, k – interval time, int(r) – integer
part of a real number r.

For example, for k = 4 and N = 1000 the algorithm pro-
duces 4 time series:

X4
1: X(1), X(5), X(9),...,X(997)

X4
2: X(2), X(6), X(10),...,X(998)

X4
3: X(3), X(7), X(11),...,X(999)

X4
4: X(4), X(8), X(12),...,X(1000)

The 'length' Lm(k) of each curve Xk
m is then calculated as:

where N – total number of samples.

Lm(k) is not 'length' in Euclidean sense, it represents the
normalized sum of absolute values of difference in ordi-
nates of pair of points distant k (with initial point m). The
'length' of curve for the time interval k, L(k), is calculated
as the mean of the k values Lm(k) for m = 1, 2,...,k:

The value of fractal dimension, Df  is calculated by a least-
squares linear best-fitting procedure as the angular coeffi-
cient of the linear regression of the log-log graph of (1)

y = ax + 

with a = Df, according to the following formulae:
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where yk = ln L(k), , k = k1,....,kmax, and n

denotes the number of k-values for which the linear

regression is calculated (2 ≤ n ≤ kmax).

The standard deviation of Df  is calculated as:

where (cf. eq. (AP2) above)

with standard deviation

Higuchi's fractal dimension has a scaling feature. Multipli-
cation of all amplitudes Xk

m by a constant factor, c, causes
multiplication of the 'length' Lm(k) by the same factor.
Such multiplication does not change Df (cf. eq. (AP2)
above):

The only parameter of Higuchi's algorithm is kmax. We
have demonstrated that the value kmax = 8 works o.k. for
sampling frequency 128 Hz and the value kmax = 15 for
sampling frequency greater than 200 Hz; we have also
demonstrated several positive features of the method, e.g.
low sensitivity to noise [26].

Higuchi's fractal dimension is a quantifier evaluated
directly in the time domain, without reconstruction of a
strange attractor in a multi-dimensional phase space.
Unlike in the case of standard chaotic quantifiers, e.g. cor-
relation dimension or Lyapunov exponents, calculation of
Higuchi's fractal dimension does not require reconstruc-
tion of the phase space, so it requires only short time
intervals – a window containing 100 data point is enough
to calculate one value of Higuchi's fractal dimension.
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