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Abstract

Stochastic evolutionary growth and pattern formation models are treated in a unified way in terms
of algorithmic models of nonlinear dynamic systems with feedback built of a standard set of signal
processing units. A number of concrete models is described and illustrated by numerous examples
of artificially generated patterns that closely imitate wide variety of patterns found in the nature.

Background

Problems of pattern formation and growth of forms
belong to the most fundamental problems in theoretical
biology and other natural sciences [1-4]. In this paper, we
treat these problems from the nonlinear dynamics and
system theory perspective. Specifically, we regard pattern
formation and growth models as versions of pseudo-ran-
dom number generators and show that they can be
described and generated in terms of nonlinear systems
with feedback built of a standard set of signal processing
units. We show also that quite simple algorithmic models
are capable of generating a wide variety of patterns, which
closely remind patterns frequently found in the nature
such as dendrite patters, labyrinth and zebra skin patterns,
papillary patterns, fingerprints and alike. We believe that
this approach facilitates unification, quantification and
comparison of the growth and pattern formation models
and secures their efficient computational implementa-
tion.

The paper is organized as following. In Section 2, com-
monly used generators of pseudo-random numbers are
described, represented in terms of the nonlinear dynamic
systems with feedback and generalized on this base. In

Section 3, it is shown that simple and straightforward
modifications of these random number generators give
rise to a wide family of stochastic growth models that are
illustrated by Eden's type models [5-8] and by several
modifications of evolutionary models that originate from
Conway's "Game of Life" [8-11]. Section 4 is devoted to
an extension of the approach to formation of 2-D stochas-
tic patterns commonly called "texture" images. It suggests
regular methods for generating texture images and pro-
vides a number of concrete examples of texture generating
algorithmic models of different complexity capable, in
particular, of imitating quite complex natural textures.

Pseudo-random number generators

Nothing in Nature is random. A thing appears random
only through the incompleteness of our knowledge (B.
Spinoza [12])

Anyone who considers arithmetical methods of produc-
ing random digits is, of course, in the state of sin. (J. Von
Neuman, [12])

In this section, we describe numerical generators of
"pseudo-random" numbers that are commonly used in
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Monte Carlo simulations and show how can they be rep-
resented in a form of nonlinear dynamical (evolutionary)
systems with feedback that we further, in sections that fol-
low, extend to more sophisticated growth and pattern for-
mation models.

First generators of pseudo-random numbers were sug-
gested by John Von Neuman at the very beginning of the
computer era. Since then, many attempts have been
undertaken to improve "randomness" of the generated
numbers including even attempts to introduce hardware
random number generators that exploit "random" nature
phenomena such as radioactivity or Brownian motion.
Finally, the concept of pseudo-random numbers won
overwhelming recognition, and software pseudo-random
number generators have become commonly accepted for
generating stochastic numbers that seem "random" in
particular applications.

These generators produce pseudo-random numbers recur-
sively from one initial number ("seed" number) by using
quite simple computational rules. For instance, Knuth
[13] recommends an algorithm that can be described by
the following recursive relationship

&) = cg e, | (1)

modC;

Here &Y is a pseudo-random number generated at t-th
iteration, C,, C,, and Cj are certain constants, [ |04 ¢ I8
an operation of finding residual of division of the input
value by C;.

This commonly used algorithm generates, one by one,
pseudo-random numbers with uniform distribution den-
sity in the range [0,1]. The algorithm can be represented
by a schematic diagram is shown in Figure 1. Represented
in this way, the algorithm is built of the following signal
processing units: a multiplication unit, a summation unit,
a point-wise nonlinearity unit that implements operation
[ Imod c (its transfer function is shown in the box in Figure
1), and a one-sample delay unit. The latter is a very impor-
tant component of the scheme that makes it recursive, or,
in another word, evolutionary.

This scheme represents an example of a very simple non-
linear dynamic (evolutionary) system. It is well known
that such systems potentially are prone to cycles and
"fixed points", states that, when reached, do not change in
the process of iterations (system evolution). A natural
requirement to the pseudo-random number generators is
that they should avoid cycles and fixed points and provide
numbers with nearly uniform distribution and without
noticeable correlations. In practice it is achieved by a care-
ful selection of the model parameters C;, C,, and C; [14].

http://www.nonlinearbiomedphys.com/content/1/1/4
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Schematic diagram of a pseudo-random number generator.
The graph shows transfer function of the point-wise nonline-
arity unit.

The above scheme can, in a very natural way, be extended
to the one presented in Figure 2.

Multiplication and summation units in the scheme of Fig-
ure 1 are replaced here by a linear filter, a device that com-
putes output signal by weighted summation of certain
number of input samples, the weights being defined by
the filter impulse response (point spread function). In
addition, one-sample delay unit of the scheme in Figure 1
is replaced by a one-frame delay unit, where frame is a cer-
tain group of samples.

If signal samples in this scheme are arranged in a form of
a 2D array, they can be displayed as an image. Figure 2b)
illustrates an example of evolution in such a system of a

Initial Point-wise nonlinearity
image Linear Output=Inputmog c,
filter > Output
Cc input
One frame } ‘npu
delay unit |«

a)

Figure 2

A modification of the pseudo-random number generator
with a linear filter in the feedback (a) and examples of an ini-
tial image (b) and generated images after one (c) and 10 (d)
iterations.
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natural image taken as a "seed". The linear filter in this
example is a simple two-dimensional "box" filter with a
uniform 3 x 3 samples impulse response. Such a filter
computes, for each image sample (pixel), image local
mean value over the window of 3 x 3 pixels centered at
this sample. A constant C; in the point-wise nonlinearity
was set equal to the half of the image maximal gray level.
One can see on this image how the nonlinearity and feed-
back destroy, in only a few iterations, all pixel correlations
that existed in the initial image and generate a 2D array of
numbers with no visual correlations.

In what follows, we will use such units, which we call "pri-
mary random number generators", as primary units in the
stochastic growth and pattern formation models. They
will generate inputs to the models and, in addition, they
will determine "clocks" of the model evolution.

Stochastic growth models

In this section, we describe several classical numerical sto-
chastic growth models to show that they can be consid-
ered as extensions of above presented pseudo-random
number generators and described in terms of nonlinear
dynamic system composed of standard signal processing
units.

Eden's type growth models

Stochastic growth models aimed at simulating biological
grows have been studied since very first years when digital
computers became available [15]. One of the first models
was suggested by M. Eden [5,6]. In Eden's model, growth
was simulated as a sequence of random "births" taking
place on a rectangular lattice with the probability propor-
tional to the number of already "live" cells in the nearest
spatial 3 x 3 vicinity of the given cell (left and right neigh-
bors at the same row, three neighbors on the rows from
above and three from bottom). Eden's model can be
mathematically represented as an recursive equation:

output (k,1 )(t) = 2Drandb(8gt_1) /8 )@ output ( k,l)(t_l)
(2)

where (k, 1) are pixel coordinates on the lattice, Sg_l is the

sum of pixel values in 8 neighbor points in the 3 x 3
neighborhood of the given pixel, t is the iteration index,
2Drandb(P) is a binary 2D array of pseudo-random num-
bers that take value one with probability P and @ denotes
modulo 2 addition of binary numbers.

Figure 3 shows how this growth model can be imple-
mented in a system that is just a slightly modified and
extended version of the system of Figure 2. This system
contains, as an individual unit, the "primary" pseudo-ran-
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dom number generator of Figure 1, which is now included
in the loop with a linear filter, point-wise nonlinearity, 2D
frame former (a unit that converts sequences of numbers
into a 2D arrays of numbers), and a one frame delay unit.
Impulse response of the linear filter and transfer function
of the point-wise nonlinearity are shown in the corre-
sponding boxes in Figure 3. This unit also generates a
clock signal for the one-frame delay unit that defines the
evolution clock rate.

We assume that the 'primary" pseudo-random number
generator generates real numbers in the range [0-1]. The
combination of the 'primary" pseudo-random number
generator and the point-wise nonlinearity with a thresh-
old transfer function forms the unit 2Drandb(P), which
implements an operation of generating, out of the pri-
mary pseudo-random numbers, binary numbers zeros
and ones with a given probability P of ones. On such an
array of binary numbers, the linear filter with impulse
response as shown in Figure 3 computes the number of
ones in the 3 x 3 neighborhood (8-neighbor sum Sg) of
each pixel thus defining the threshold level of the point-
wise nonlinearity.

Clearly, this simple model describes unlimited growth.
One can, however, easily modify this model to simulate
drain of "sources of food" by measuring the size of the
growing formation and introducing a corresponding satu-
ration to the probability of "birth" as it is shown in sche-
matic diagram of Figure 4.

In this scheme, the 2Drandb(P) unit of Figure 3a is pre-
ceded by a (x7) - point-wise nonlinearity that implements
the saturation. This modified model can be described by
equation

(t-1) \
+ ( [ (¢ 1) \_Csvl . P |
_______________ 1
Linear I 2Drandb(P 1
fllFer I Primary . A 1
with pseudo-random P()lr'lt-w1§e 2D |
Seel impulse |1 number  4»| nonlinearity frame
response ||  generator 1T former | !
IINENAL i !
g 1[0 1] [T P P g 1
10111 I I
Clock signal ;
One frame
. je———
delay unit
Output
Figure 3

Schematic diagram of the Eden's model. The table in the box
"Linear filter" presents the linear filter impulse response. The
graph in the box "Point-wise nonlinearity" in shows the non-
linearity transfer function.
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Schematic diagram of the Eden's model with saturation.

(t-1)

where Sg;_l is a "global" sum over the entire field of

growth. It defines the size of the formation on (t-1)-th
iteration (evolution) step.

If saturation is introduced to all probabilities but to the
probability of "birth" from only one neighboring live cell,
one arrives at a modification of the model, which begins
to grow dendrites after (statistically) the cell reaches a cer-
tain size. Figs. 5a) and 5b) illustrate the work of these
models. Images are displayed here in color that corre-
sponds to the "age", from red to blue, of each pixel
(number of evolution steps from its birth). Other modifi-
cations of the model aimed, for instance, at imitating
dependence of growth from "age" of cells are also more or
less straightforward.

Conway's "Game of Life" and its modifications
A famous mathematical model known as Conway's
"Game of Life" [8] represents yet another type of growth

Figure 5

Examples of images generated by the Eden's model with satu-
ration (a) and its modification that evolves into growing den-
drites (b). Images are color coded according to the color bar
to indicate the "age" of different parts of the patterns.
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models, where cells on a rectangular lattice (raster) can
give a "births" or "die out" depending on the number of
"alive" and empty ("dead") cells in their nearest spatial
neighborhood. The rules of the original "Game of life" are
very simple: (i) if an empty cell has exactly 3 "alive" neigh-
bor cells in its 3 x 3 neighborhood in the rectangular lat-
tice, birth takes place in this cell on the next step of the
evolution; (ii) if an "alive" cell has less than 2 and more
than 3 "alive" cells in the neighborhood it will die on the
next step; (iii) otherwise nothing happens. These rules can
be formally described by the equation:

output (k,1) = |:0utpr,lt(k,l)t_1 ]5(8{{1 —2)+8(S§_1 —3)
(4)

where "alive" and "empty" cells are represented by "ones"
and "zeros", respectively, J( - ) is the Kronecker delta (5(0)

=1; 85(x#0) =0), Sé_l is the sum of the values in 8-neigh-

borhood of (k, I)-th cell on a rectangular lattice, and ¢ is
the iteration number.

In the original model[8], a deterministic initial distribu-
tion of zeros and ones in the field was assumed. By intro-
ducing "random" initial distribution of "alive" and empty
cells, the model can be made stochastic [9,10]. The corre-
sponding schematic diagram of this model is shown in
Figure 6.

As one can see, this diagram contains essentially the same
units as the Eden's model, but here they as arranged in 2
parallel branches (one for "births" and one for "deaths"),

Linear filter Point wise
with impulse nonlinearity
response unit
~ O] ™
1{0]1 1
1]1]1
123
2Drandb(P)
Linear filter : i
ANCE ’ Point wise
with impulse : ;i
response nonlinearity
Ly N unit
T 1[1]1
1{0]1
P 111 !
123

«] One-frame
delay unit

A
v

Figure 6

Schematic diagram of the stochastic Conway's "Game of Life"
model. Tables and graphs in boxes show impulse response
and transfer functions of the corresponding units.
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and the 2Drandb(P) generator of the Eden's model is
placed at the input of the model and is used for generating
only initial "random" distribution of 1's and 0's for
"alive" and empty cells. The evolution clock rate of the
model is determined in this model by the one-frame delay
unit.

It is well known that the model generates several types of
formations:

- Stable formations that once appeared keep staying
unchanged unless they are destroyed by other formations;

- Growing crystal-like formations that grow until their
fragments form stable formations or die out;

- Cydlic, in course of iterations, formation that repeat
themselves with a certain period;

- "Moving", in course of iterations, formations also featur-
ing iteration-wise cycles ("gliders").

Boundary conditions of the model are important for its
evolution. Under pseudo-random boundary conditions,
when pseudo-random binary numbers are permanently
generated at the borders of the field, the model generates
patterns that do not converge to a fixed (stable) ones
though always contain certain number of formations that
"live" during considerably large number of iterations

a) . b) .
c). d).
Figure 7
Evolution of pattern a) in the Game of Life model: a) — initial

pattern, b) — d) — patterns on 75, 76, and 77-th iterations,
correspondingly.
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(evolution steps). Such pattern evolution is illustrated in
Figure 7.

One can, for instance, see on these images "randomly"
located stable formations such as 2 x 2 pixel square
blocks, hexagonal formations called beehives, formations
that grow like crystals, and moving formations, or "glid-
ers" (marked in the figures by black boxes), which move
across the lattice with a period of 4 evolution steps.

An important parameter of the model is the direction of
the spatial interaction. It is defined by the linear filter
impulse response. In the original Conway's model, the
spatial interaction is almost isotropic: all cell's 8 neigh-
bors play the same role in the defining next state of the cell
on each iteration step. In the model of Figure 6, this is
reflected in the linear filter isotropic impulse response
equal to 1 for all 8 neighbor pixels. In general, the filter
impulse response may not be isotropic. In particular, it
may define only one-dimensional interaction (only left
and right neighbors of each cell affect its next state) thus
producing one-dimensional models. An interesting spe-
cial case of such a 1-D model is the one described by the
equation:

output(k)® = output (k)1 5S,) ® &S,-1), (5)
where S, is the sum over 2 neighbor cells of the k-th cell
(from the left and from the right).

Figure 8a) shows, row by row, an example of the evolu-
tionary behavior of such a one-dimensional model. It is
interesting to observe that patterns, which appear in the
process of the evolution, are identical to the so-called Sier-
pinski Gasket [16]. As it is shown in Figure 8b), they also
remind patterns that some see-shells develop in their life
(see, for instance, [17,18].

Figure 8

a) — Evolution (downward in vertical direction) of a one-
dimensional (in horizontal direction) modification (Eq. 5) of
the Game of Life. Initial rate of "alive" points in the first row
is 0.3. b) — a fragment of "liva porphiria" see shell.
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One can further modify the canonical Conway's model by
introducing stochastic "death" and "birth" events:

output (k1) =2 Drandb( Py )[zmtput(k/l)k1 ]5(8{{1 —2)+2Dmndb(P;J )5(8@’1 —3),
(6)

where 2Drandb(P,;) and 2Drandb(P,) are the same
binary pseudo-random number generators as in the
Eden's model (Eq. 2). They produce "ones" with probabil-
ities P, (probability of "death") and P, (probability of
"birth"), respectively. Note that in the original, non-sto-
chastic, Conway's model, P;= P, = 1.

If P, <1 the evolutionary behavior of this model changes
very substantially. The model begins to produce laby-
rinth-alike formations with irregular dislocation whose
positions depend on the realization of the initial primary
pattern. While the "body" of the patterns stabilizes after a
few iterations, their periphery continues growing inde-
pendently until the pattern fills the entire lattice. Depend-
ing of the probability of "ones" in the initial pattern it
may happen that several such formations arise and start
growing until they merge into one larger labyrinth-alike
formation. An example of such an evolution is shown in
Figure 9. These labyrinth-alike patterns can very fre-
quently be found among natural patterns such as patters
of magnetic domains, paterns of stripes on zebra skin, lab-

. .
c) d)

Figure 9

Examples of the modified Conway's model evolution with P,

= 0.25 and P, = | (a) — initial pattern; b), c), d) — evolution

results after 50, 75 and 200-th iteration steps, correspond-
ingly, that form "labyrinth" or "zebra skin" — patterns.

http://www.nonlinearbiomedphys.com/content/1/1/4

yrinth alike patterns on fingerprints and similar forma-
tions (Figure 10 adopted from [21]).

One can further generalize the Conway's model in differ-
ent ways. An interesting option is the one, in which the
Kronecker delta-function &(-), which describes logical
operation in Eq. 4, is replaced by a "fuzzy delta", a non-
monotonic unimodal function A(-) [9-11]:

output(t) (k1)= [output(t_l) (k,l)]A( L(lt_l) -C )+ A(L(zt_l) -C, J
(7)

where L, and L, are outputs of linear filters that replace
summations over 8 neighbors in the model of Eq. 4 and
C, and C, are constants that replace thresholds 2 and 3 in
the model of Eq. 4. In this modification, states of cells are
not binary and are modeled by real numbers that take
arbitrary values in the range [0,1].

Experiments reveal very rich evolutional pattern forma-
tion capability of this model. With this model, the follow-
ing three major types of the evolutionary behavior can be
observed depending on the spread of the "fuzzy delta"
and constants C; and C,: "stable chaos", "ordering of
chaos" and "reemerging of chaos".

In the "stable chaos" mode, initial chaotic patterns pro-
duced by the primary 2-D random number generator
gradually evolve into visually correlated patterns that then
remain to look similarly though individual cell values
keep changing with iterations.

In the "ordering of chaos" mode, initial chaotic patterns
degenerate, in the course of iterations, into spatial star
constellation-alike or labyrinth-alike patterns that remain
stable spatial-wise but may exhibit "temporal" (iteration-
wise) cycles. Obviously these are the model's "fixed"
points.

Figure 10

Natural "labyrinth" and "zebra skin" patterns. a) — image of
the magnetic domain structure (adopted from [21]); b) —a
fragment of the zebra skin; c) — a fingerprint.
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The most complex and varying is the behavior of the
"reemerging of chaos" type. Its basic feature is rapid
degeneration of the initial pseudo-random pattern into a
uniform field (a trivial fixed point of the model) or into
"star constellations". After that, a new chaotic pattern
emerges through growing crystal-alike formations from
the constellations left from the initial pattern, through
spatial waves from the borders when they are kept to be
random, or through the appearance of different types of
"gliders" that move across and collide producing clouds
of new "particles". These emerging formations gradually
fill in the field with visually correlated patterns similarly
looking to those, which are characteristic for the "stable
chaos" mode.

Examples of the evolutionary behavior of such a model
are shown in Figure 11. As one can see, typical examples
of patterns generated by the model are labyrimth patterns
(Figure 11d) and papillary pattern (Figure 11c) that
remind patterns frequently found in cytology as the one
shown in Figure 12 (adopted from [23]). An illustrative
video showing moving gliders generated by the model can
be found at L. Yaroslavsky’s home page ([22]).

2-D pattern formation: texture images

Above described growth models can be regarded as special
cases of a general model described by schematic diagram
shown in Figure 13. Such a representation assumes that
output patterns are generated by mean of a transforma-

Figure 11

Examples of the evolutionary behavior of the modified Con-
way's model of Eq. 7: stable "star constellations" patterns
(a,b), "clouds" (c), and labyrinth-alike pattern (). Cell value
levels in the images are varying here from 0 to 255 and are
coded in color as it is represented by the color bar.

http://www.nonlinearbiomedphys.com/content/1/1/4

Figure 12
Natural "oncocytic papillary pattern (adopted from [23]).

tion of primary 2D arrays of pseudo-random numbers in
a certain signal processing system. Different systems pro-
duce patterns of different classes. Patterns generated by
the same system out of different realizations of the pri-
mary array of pseudo-random numbers are different real-
izations of patterns of the same class defined by the
transformation system.

In order to make such a representation constructive, we
will assume that the transformation systems are built
from of a set of certain standard (elementary) signal
processing units. Parameters of these units and the trans-
formation system structure form the set of parameters that
define stochastic pattern of a certain class. Specific selec-
tion of the set of structural signal processing units is gov-
erned by considerations of the convenience of their
parameterization and by their computational complexity.
It is only natural to use units that form the basic and com-
putationally efficient instrumentation tool of digital sig-
nal and image processing (see, for instance, [19], such as
following units:

e Point-wise nonlinearity (PWN) that transforms signal
samples according to the relationship:

output(k, 1) = F(input (k, 1)), (8)
Primary 2-D array Output pattern
of pseudo-random | p| Transformation >
numbers system
Figure 13

Algorithmic model of texture images.
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where F( -) is, generally, a nonlinear function that defines
the transformation transfer function of the unit and (k, 1)
are sample indices.

e Linear filters (LF). Linear filters are defined by the equa-
tion of weighted summation:

output (k,1) = Zh(m,n;k,l)input(k,l), 9)

m,n

where h(m, n; k, 1) - is the filter impulse response.

e Rank filters (RF) [19]. Rank filters operate with signal
order statistics computed over a certain neighborhood of
each sample of the array and are defined by the equation:

output(k, 1) = F, (input(k, 1)), (10)
where F () is a function defined by the local order sta-
tistics computed, for every (k, I)-th sample of the array
over its certain neighborhood (nbh).

e Logical filters. Logical filters assume working with
binary arrays and are defined by a certain Boolean func-
tion of input pixels. For binary images, logical filters can
implement both linear and rank filters.

This list of signal processing elementary units does not
pretend to be complete and one is free to further extend or
to modify this list to include other processing units
proved to be useful signal processing components. As for
the connection of units into a system, the following types
of interconnections can be assumed:

® serial connection;
e parallel connection;
o feedback.

In what follows in this section, we will show how such an
approach allows to readily build models that are capable
of generating very wide variety of stochastic 2-D patterns,
including those that imitate natural textures. We will call
these patterns texture images.

Figure 14 represents the simplest PWN-model, in which
the transformation system consists of the primary pseudo-
random random generator and a single point-wise non-
linear transformation (PWN) unit in cascade. Note that
unit 2Drandb(P) used in the above described growth
models is a particular version of this model, in which
point-wise nonlinearity is a threshold nonlinearity

In the PWN-model, one can easily, by an appropriate
selection of the nonlinearity, control probability distribu-

http://www.nonlinearbiomedphys.com/content/1/1/4

Primary 2-D Texture
array of _»| Point-wise image
pseudo-random nonlinearity
numbers
Figure 14

PWN-model of texture images.

tion density of the values of samples of generated pat-
terns.

The next step in the hierarchy of models is LF-model, in
which the transformation system consists of a primary
pseudo-random number generator and a linear filter in
cascade (Figure 15).

On can show [11,19] that, with LF models, patterns with
probability distribution of sample values close to the
Gaussian distribution are generated. Selection of the lin-
ear filter frequency response (Fourier Transform of its
impulse response) controls Fourier power spectrum (spec-
tral density) of the pattern and, correspondingly, its corre-
lation function.

Figure 16 shows four examples of patterns obtained from
initial pattern of uniformly distributed uncorrelated
pseudo-random numbers using linear filters with differ-
ent frequency responses (shown in the left column of the
figure). Especial interest represents the texture shown at
the bottom of the figure. It was generated using linear fil-
ter with the isotropic filter frequency response, inversely
proportional to absolute value of spatial frequency. This
texture image illustrates what is conventionally known as
(1/f)-fractals [16].

LF-model, however simple it is, allows imitating quite a
number of natural texture images [11,20]. Some illustra-
tive examples of such images are shown in Figure 17, [24].

- Texture
Primary 2-D image
array of Linear filter ——p
pseudo-random
numbers
Figure 15
LF-model of texture images.
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(page number not for citation purposes)



Nonlinear Biomedical Physics 2007, 1:4

LA
T e

P

Figure 16

Examples of texture images generated by LF-models (right
column) and the corresponding filter frequency responses
shown (left column) in form of images and as a plot in 2-D
coordinates of spatial frequencies.

Combination of the threshold type point-wise nonlinear-
ity and a linear filter in cascade with the primary pseudo-
random number generator (Figure 18a) forms PWN-LF
models. They generate patterns of randomly distributed
filter impulse responses. An example is shown in Figure
18b).

Inversion of the order of the point-wise nonlinearity and
linear filter in PWN-LF models results in LF-PWN-models
(Figure 19a). LF-PWN-models allow to generate textures
with correlation function controlled by the linear filter
impulse response and with a given distribution density
controlled by the nonlinear unit. Examples of such a tex-
ture image is shown in Figure 19b).

All above described models contain only one branch (sev-
eral units in cascade). Obviously, texture models can have
several branches whose outputs can be combined in dif-
ferent ways. For instance, outputs of branches can be mul-
tiplied, or output of one branch can be used to switch
between outputs of other branches, or output of one
branch can control parameters of the transformation units
in another branch, etc. Above described growth models of
Figure 3 and 4 exemplify such multiple branch models.
Figure 20 shows four examples of texture images gener-

http://www.nonlinearbiomedphys.com/content/1/1/4
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Figure 17

Natural texture images from Brodatz' album of natural tex-
tures [24] (left column, from top to bottom: textile, moher,
wood) and their synthetic copies (right column) generated by
the LF-model. Image at the bottom is yet another example of
a synthetic wood-texture artificially colored in brown.

ated by more sophisticated models with multiple
branches.

Up to now no feedback connection was assumed in the
texture models except the one in the primary pseudo-ran-
dom number generator. Clearly, feedback gives to the
models evolutionary features In order to exhibit nontriv-
ial evolutionary behavior, systems should contain, in a
loop, both linear filter and a non-monotonic nonlinearity
or a nonlinear filter with spatial interaction, such as rank
filter. Inserting into the loop rank filters that combine spa-
tial interaction and substantial nonlinearity in a more
sophisticated way then just by cascading linear filters and
point-wise nonlinearity gives rise to a new family of evo-
lutionary models. Note that the primary pseudo-random
number generator in such system serves to introduce only
an initial "seed" pattern. The above random number gen-
erator of Figure 2 and growth models exemplify the sim-
plest of such systems.

An example of such an evolutionary model with a rank fil-
ter is illustrated in Figs. 21. Figure 22 shows examples of
textures generated by the model. They very closely remind
natural patterns of crystals illustrated in Figure 23. The
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Primary 2-D array of Threshold Texture
pseudo-random point-wise | ] Linear filter | _image >

numbers nonlinearity

a)

Figure 18
PWN-LF-model of texture images (a) and an example of a
generated texture (b).

rank filter used in this model replaces, in each iteration,
gray level of every pixel by the most frequent value within
a certain spatial window S centered at the pixel (this oper-
ation is called MODEg (input(k, 1) with k, I as pixel 2-D
indices[19]).

As one can see, patterns generated by this model are very
reminiscent of natural crystals, cells and cell wall patterns.

Conclusion

We outlined an approach to the analysis and design of sto-
chastic growth and pattern formation models that treats
the models in terms of nonlinear signal processing sys-
tems with feedback composed of a set of standard and

algorithmically simple processing units. We have
Texture
Primary 2-D array of Point-wise image

pseudo-random | ) Linear filter |—p| nonlinearity
numbers

a)

Figure 19
LF-PWN-model (a) and examples of generated texture
images (b).

http://www.nonlinearbiomedphys.com/content/1/1/4

Figure 20
Naturally looking texture images generated by models with
multiple branches.

described a variety of concrete growth and pattern forma-
tion models built on the base of this approach and have
shown, on examples, that they are capable of imitating
natural growth and patterns such as dendrites, see shell,
labyrinth, zebra skin, papillary, fingerprint patterns, fur,
wood, textile, clouds and alike textures. We believe that
such a unified approach facilitates the growth and pattern
formation model design, comparison, quantification and
unification and secures their efficient computational
implementation.

Primary 2-D Rank filter: Texture inlage
array of A "|output(k,l1) MODE [input(k,1) »
pseudo-random
numbers
One-frame
delay unit
Figure 21

Schematic diagram of an evolutionary texture model with a
rank filter MODES.
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Figure 22

Examples of images generated by the model of Figure 20: pri-
mary pseudo-random pattern (a); two texture images gener-
ated by the special homogeneous (b) and inhomogeneous (c)
model with different size of the spatial neighborhood; edges

pattern of figure (d).

Figure 23
Natural texture image of crystals.

19.
20.

21.

22.

23.

24.
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