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Abstract

The dynamics of three mutually coupled cortical neurons with time delays in the coupling are
explored numerically and analytically. The neurons are coupled in a line, with the middle neuron
sending a somewhat stronger projection to the outer neurons than the feedback it receives, to
model for instance the relay of a signal from primary to higher cortical areas. For a given coupling
architecture, the delays introduce correlations in the time series at the time-scale of the delay. It
was found that the middle neuron leads the outer ones by the delay time, while the outer neurons
are synchronized with zero lag times. Synchronization is found to be highly dependent on the
synaptic time constant, with faster synapses increasing both the degree of synchronization and the
firing rate. Analysis shows that pre-synaptic input during the inter-spike interval stabilizes the
synchronous state, even for arbitrarily weak coupling, and independent of the initial phase. The
finding may be of significance to synchronization of large groups of cells in the cortex that are

spatially distanced from each other.

| Background

There is a significant amount of research showing that
spike coincidence of neurons encodes information. Singer
and colleagues showed not only that networks of neigh-
boring neurons tend to become synchronized, but that
tight synchronization occurs at the opposite hemispheres
of the brain, in the presence of significant (6 to 8 millisec-
onds propagation delays) [1]. Zero time-lag synchroniza-
tion of neural activity has been involved in such
important phenomena as ability to recognize objects (by
binding different attributes) [2,3], olfactory discrimina-
tion [4], and has even been proposed as one of the neural
correlates of consciousness [5]. It was found that visuo-
motor integration is associated with synchronization of
signals recorded from the visual and parietal, and motor
and parietal areas of the awake cat [6,7].

While much of analysis focuses on network synchrony in
the absence of time delays, delays are common in neural
networks and there is evidence that under certain param-
eters [8] or coupling architectures, delays may actually
contribute to synchronization. In a recent issue of Science
[9], a short article describes a recent laser experiment [10]
of mutually coupled lasers in a row. It is noted that when
only two lasers are coupled, there is a lag in their phases
equal to the amount of time it takes light to pass between
them. However, when a third laser is added, the outputs
of the outer lasers show zero time-lag synchronization. It
has been suggested by Wolf Singer that this phenomena
could shed light on synchronization of nerve signals in
the brain in the presence of delays [9]. In particular,
researchers indicate that this zero-lag synchronization

Page 1 of 9

(page number not for citation purposes)


http://www.nonlinearbiomedphys.com/content/1/1/2
http://creativecommons.org/licenses/by/2.0
http://www.biomedcentral.com/
http://www.biomedcentral.com/info/about/charter/

Nonlinear Biomedical Physics 2007, 1:2

effect in three coupled oscillators could clarify how the
hemispheres of the brain synchronize [9].

With this in mind, we propose a three neuron coupling
scheme, analogous to the three laser experiment described
above. The synchronization phenomena of the three laser
system has been recently analyzed [11], elucidating the
conditions under which synchronization occurs. It was
shown analytically and confirmed with numerics that
increasing the delays improves synchronization of the
outer lasers [11]. As will be shown in the present paper the
dependence of synchronization on parameters is some-
what different in the three coupled neurons case, where it
is actually the synaptic time constant, rather than delays in
propagation that are important for synchronization of the
outer neurons. It is perhaps not surprising that the mech-
anism behind synchronization in this three neuron model
is different, since dynamics at each synapse are modeled
by two differential equations, rather than much simpler
linear coupling of the three laser scheme.

While the basic coupling architecture we choose to con-
sider is the same as the above described laser experiment,
in that we have a symmetric system of three mutually
delay coupled oscillators, the projections from the middle
to the outer neurons are somewhat stronger (with faster
synaptic time constant) than the coupling from the outer
to the middle neuron. This difference in coupling strength
and synaptic time constant was inspired by the hierarchi-
cal structure of many networks in the brain, which to a
first approximation is a feed-forward network, modulated
by a weaker modulatory feedback [12]. For example, there
is a strong forward projection from the thalamic LGN area
to V1 or from V1 to MT, with weaker modulatory feedback
projections that modulate the magnitude of the cell's
response [3]. It has been suggested that exessively strong
mutually coupled loops in the brain would promote
uncontrollable oscillations, such as in epilepsy [12,13].

The present paper investigates a simple model for syn-
chronization of cortical cells receiving a common time-
delayed input from a different area of the brain, such as
the case with projections of pyramidal cells to other corti-
cal areas or the thalamus to the cortex, and sending a
weaker time-delayed feedback. The central dynamical
question addressed considers when the synchronous
behavior of such a neural network is stable, particularly in
regard to the synaptic coupling strengths, and the synaptic
time constant. We find that shorter synaptic time constant
of the target cells promotes synchronization, and even
increases the firing rate, for the same strength of input.

The paper is organized as follows: In Section 2, the basic
model is set up, (see Fig. 1) and presented along with
numerical results that show the dependence of synchroni-
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Figure |

The basic model of three synaptically coupled neurons. The
strength of the coupling from the middle to the outer neu-
rons is given by dand from the outer to the middle by 6,.
The injected currents are shown. All synaptic coupling has
propagation delay of 7,and a synaptic time constant of 7,
and 7,,, for the outer and the middle neurons, respectively.

zation and firing rate on the strength of coupling and syn-
aptic  conductance.  Section 3, analyzes the
synchronization observed for short synaptic times by lin-
earizing about the dynamics of two nearby trajectories. It
shows that fast synaptic input tends to synchronize two
nearby trajectories, regardless of their phase with respect
to the input signal. Section 4 concludes and summarizes.

2 Basic Model and Numerics

Neurons can be largely divided into two classes, depend-
ent on their spiking properties. Class I neurons can be
stimulated to fire at an arbitrarily low frequency, due to a
saddle-node bifurcation, with increasing frequency as the
magnitude of the stimulating current increases. Class 1I
neurons, on the other hand, only begin to fire at relatively
high frequency, with their limit cycle resulting from a sub-
critical Hopf bifurcation. Class II neurons are well repre-
sented by the squid axon, while a large majority of the
mammalian neurons are of the Class I type. Dynamics of
a human neo-cortical neuron in the absence of synaptic
connections are well approximated by the following Class
I neuron equations: [14]

‘Z—V =—{17.81+47.58V +33.8V2}(V —0.48) - 26R(V +0.95) + I = F(V,R) + I
t

R _ i( —R+1.29V +0.79 +3.3(V +0.38)2 ) =G(V,R),
dt g

(1)
where V and R are voltage and recovery variables, respec-
tively, and 7 = 5.6 ms. The dR /dt equation is written as a
sum of a linear term, for the normal N a+ and K* currents,
and a quadratic terms in V to approximate the transient
potassium current contributions [15]. The above model
has been optimized to provide an accurate quantitative fit
to the shape of a regular spiking neuron potentials
obtained from human neocortical neurons [16]. Figure 2
shows the limit cycle of a cortical neuron in Eq. (1) when
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Figure 2
Limit cycle of an uncoupled cortical neuron, given by Eq. (I).
I=0.5nA.
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Figure 3
Conductance, g, after a single pre-synaptic spike. 7,
and 5 ms.
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the applied current, I, is above the bifurcation value,
resulting in a saddle-node bifurcation. Due to a quadratic
term in the recovery variable, the spike rate of a cortical
neuron can be arbitrarily low, for low currents, and
increases as I is increased. The above neurons can be cou-
pled by adding an additional term to dV /dt in Eq. (1) pro-
portional to g (V - Eg,), where g is the synaptic
conductance variable, E,,, = 0 for excitatory synapses and
-0.92 for inhibitory. The synaptic conductance, g is
obtained from the following equations, commonly used
for synaptic coupling [14],

Z_]: -— (=f + Hstep (Vpre —€2))
syn
o (2)
o E(—g +f)

where H,, (x) = 1, if x> 0 and zero if x < 0, V,,, is the volt-
age of the presynaptic neuron and g, is the synaptic con-
ductance time constant. In numerical simulation, Q = -
0.20 mV was chosen [14]. The reason for using two synap-
tic equations is that, depending on z,,, the conductance
will peak after V,,,, continuing to depolarize the mem-
brane after the end of the presynaptic spike (see Figure 3).
This type of response is consistent with physiological data.
For brief stimulus spike at t = 0, the two synaptic equa-
tions produce a response proportional to [13]

g:(t/rszyn)exp(_t/rsyn) (3)

Figure 3 shows g for different values of z,,. In each case,
the area under the curve is the same (equal to one), with
7, determining the width of the post-synaptic spike.
Using Egs. (1) and (2) we can now set up the basic model
of three mutually coupled neurons. The basic set-up is
shown in Figure 1, where 3 neurons are coupled in a line.
The middle neuron sends an excitatory time-delayed sig-
nal to the two outer neurons which are coupled to the
middle one via weaker delayed coupling with a longer
synaptic time constant. This model reflect the typically
observed hierarchy in the brain (described in the intro-
duction), where the neurons in one brain area, such as the
thalamus, send strong excitatory connections to cortical
neurons, receiving weaker modulatory feedback. Since the
equations of the outer neurons are identical (resulting
from a fit with experimental data) and they receive the
same synaptic input from the middle cell, their synchroni-
zation would indicate that a group of cortical neurons
with the same type of synaptic coupling will fire synchro-
nously when subjected to a particular synaptic input.
Using Eq. (1), the equations for the coupled neurons are
given by:

av,

= =F(V;, R)+1; = 6;8i(V; — Egn)
g R (4)
i
=0 o(V,R:
I 8(Vi/R;)

where i is the index of each neuron, with outer neurons
receiving the same current, I; ;= I, and the same synaptic
strength, &) = J;= J. The current input to the middle neu-
ron is higher than to the outer ones: I, > I, leading to the
lower uncoupled spiking rate for the outer cells. This was
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done so that the higher activity of the inner cell drives the
outer ones, as might be the case in a typical hierarchical
network [3]. The synaptic input to the middle neuron is
weaker, J, <6. The synaptic time-constant in Eq. (2) is the
same for the outer neurons, 7, = 7,,,3= 7, butlonger for
the middle neuron, to model the affect of a slowly-varying
modulatory feedback. The conductances, g;, are obtained
from Eq. (2), with presynaptic voltage to the middle cell
givenby: V, .=V, (t- ;) + V5 (t- 7;), and to the outer cells
by Vi1,5=V, (¢ - 7;). The delay in the propagation of the
signal is given by z;.

2.] The effect of delays on correlation and synchronization
While the length of the synaptic delay, 7;, does not seem
to effect the degree of synchronization, it has a substantial
effect on correlations and phase relations between neu-
rons. Figure 4 shows correlations in spiking output
between the middle and outer neuron, and between outer
neurons for z;= 10. This delay time is similar, for instance,
to the propagation delay between the two hemispheres of
the brain [1]. The x-axis indicates the time-shift at which
the correlations function was computed. The outer neu-
rons are synchronized, since C;5=1 at t = 0. It can be seen
that the greatest correlations between the inner and outer
neurons occur when ¢t is shifted by the delay time, 7;. The
delay also creates spikes in correlation at intervals of twice
the delay time, as can be seen in Fig. 4. Since, in this case,
the outer neurons are synchronized, the spikes indicate
that there are self-correlations in the time series of a single
neuron at intervals of 27z;. This is the round-trip or feed-
back time, since its the minimum time that it would take
for a signal to travel from one of the neurons, affect the

time t

time t

Figure 4

Correlations of spiking output. Top: between the outer and

the middle neuron. Bottom: Between outer neurons. 7,= |0
ms,6=4,5,=2,7,= | ms, 7,,,=2ms, [, 3=1,=0.22 nA, |,
=0.5 nA.
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target, and get back to that same neuron. It follows that
time delays lead to self-correlations in the spike trains that
are not observed when delays are absent, and which may
lead to more regular patterns in the time-series data.

For reasons explained in the introduction, 6> 6, and 7,
<7, were used to model the affect of a stronger forward
and a weaker modulatory feedback. For this type of cou-
pling, the middle neuron leads the outer ones by the delay
time, 7;. This type of phase-locking behavior has been
observed in other time-delay systems, such as lasers
[17,18]. Thus the time-shift between two correlated spike
trains should be directly related to the delays in transmis-

sion, with the input leading the output by the delay time.

2.2 The effect of the coupling strength on firing rate and
synchronization

Increasing the synaptic coupling in general increases the
firing rate of the neurons for excitatory synapses. Above a
certain value of the coupling strength, there is phase-lock-
ing between the inner and the outer neurons, whereby all
firing rates are equal. The bifurcation value of synaptic
coupling at which 1 : 1 frequency locking occurs depends
on the current injected into each cell. In the absence of
coupling, a significant difference in injected current for
the outer and inner neurons, (I;=0.22 and I, = 0.5 in sim-
ulations) leads to a big difference in firing rate. Figure 5
shows a typical voltage trace for the uncoupled, §= 0, and
coupled neurons, § = 4, where coupling is sufficiently
strong to cause phase-locking. Phase-locking or 1 : 1 fre-
quency locking occurs for § > 3.4. This type of behavior
has been observed for mutually coupled neurons in the
absence of delays [14]. For lesser values of the coupling
strength, different frequency locked behaviors are

o

-1
0 200 400 600 800 1000 0 200 400 600 800 1000

* Oy MY

0 200 400 600 800 1000 0 200 400 600 800 1000
time t time t

Figure 5
Left: spiking in the absence of coupling. Right: coupling, 5= 4,
=2, 7,,= |, 7, = 2. In both cases, I, = 0.22, [, = 0.5.
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observed, with frequency ratio between 1 and f; /f,, where
f; and f, are the frequencies of inner and outer neurons,
respectively, in the absence of synaptic coupling. Figure 6
shows 1 : 4 frequency locking that occurs for weak synap-
tic coupling: 6 = 0.5, 6, = 0.3. When the coupling is too
weak, the outer neurons become desynchronized, as
shown in Figure 7. The bifurcation value of &, however
depends on the synaptic time constant, z,,, of the outer-
neurons. Thus Figs. 6 and 8, which have a very short time
constant of z,,, = 0.03, show synchronization at a lower
coupling strength of 5= 0.5, compared to a minimum & =
1.03 needed for synchronization of neurons in Fig. 7,
where 7., = 0.5 (a more realistic value for fast synapses).
This sensitive dependence of synchronization on the cou-
pling strength and synaptic time constant of the outer-
neurons is explored analytically in Section III.

2.3 The effect of synaptic time-constant on
synchronization and firing rate

Figure 9 shows an increase in firing rate of the outer neu-
rons as their synaptic time constant, Topms is decreased. This
increase in firing rate may be surprising, since the time
constant only controls the width of the conductance spike
and not the area under the curve, as shown in Fig. 3. Thus
the contribution of a pre-synaptic spike to a change in
post-synaptic voltage during an inter-spike interval is
largely independent of the synaptic time constant. This
can be seen by integrating the g (V;- E,,) term in Eq. (4)
over the interval of conductance change. Figure 10 shows
a fluctuation in conductance for a system given by Egs. (2)
and (4), with 7, = 1 and 7,,,, = 3. A lower firing rate that
occurs for slower synapses may be the result of the decay
of any increase in voltage during the inter-spike interval

1
_ . . . . . . . . .
0 100 200 300 400 500 600 700 800 900 1000
time t
1
_ ‘ e { A ‘ ‘ ‘ ‘
0 100 200 300 400 500 600 700 800 900 1000
time t
1
2 o 1
1 . . . . . . . . .
0 100 200 300 400 500 600 700 800 900 1000
time t
Figure 6

Spiking voltage for weak coupling, 6= 0.5, 7,,,= 0.03, 6, =
0.3. There is | : 4 frequency locking between the outer and
the middle neurons.
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Figure 7
Sensitive dependence of synchronization on coupling
strength. Top: 6 = 1.02, Bottom: 6= 1.03, ¢,,,= 0.5, 5,=0.3.

syn

back to the limit cycle trajectory (see the bottom of Fig. 8).
A pre-synaptic spike from the inner neuron can trigger a
spike from the outer one, when it is delivered toward the
end of the inter-spike interval. Thus a more narrow jump
in conductance and the resultant jump in voltage, V, 3,
may mean that there is less decay before the critical
threshold is reached, thereby increasing the likelihood of
a spike.

0.2- B
ok 4

- “02F 1
>
0.4 4
-0.6 T
-0.81- 1
G
-08 -07 -06 -05 -04 -03 -02 -0.1 0 0.1 02 03
\al
0.45
0.4
0.351
0.3
0.251
0.2
-0.8 -0.6 -0.4 -0.2 0 0.2
.
Figure 8

Synchronization for weakly coupled, fast synapses. § = 0.5,
7y = 0.03, 5, = 0.3. Top: synchronization after the transients
die out. Bottom: Limit cycle of one of the outer neurons.
Same parameters as in Fig. 6.
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Figure 9
Increase in firing rate as 7, , decreases. Left: 7,,, = 2. Right:
7y, = 0.1. In both cases, 6= 1, 6,=0.2, 7, = 4,1,=0.22, I, =

The most noticeable affect of the decrease in r is greater
synchronization. This is shown in Fig. 11, where the outer
neurons become progressively synchronized as 7, is
decreased from 0.5 to 0.2. It can be seen that for relatively
weak coupling of =1, 6,=0, and 7,,, = 0.2, the outer neu-
rons are completely synchronized, after the transients die
out. The next section analyzes the affect of a presynaptic
spike on a fast synapse (small z,,) in synchronizing two

nearby trajectories of the outer neurons.
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Figure 10

Conductance for

wn= |, Tym = 3. All else as in Fig. 4.
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Dependence of synchronization on the synaptic time con-
stant, .. Top: 7, = 0.5, Middle: 7, = 0.3, Bottom: 7, =

0.2, In all three cases, =1, 6, = 0.

3 Analysis of synchronization for weakly coupled,
fast synapses

The three neuron model described by Egs. (2) and (4)
possesses internal symmetry, e.g. its equations of motion
do not change if the variables {V,, R;} and {V;, R;} are
interchanged. It follows that the synchronized regime,
where the symmetric variables are exactly equal: {V, =V,
=V, Ry = Ry=R,}, is a solution [19]. For an uncoupled
system, this solution would not be a stable one, since any
perturbation along the limit cycle would result in a phase-
difference. A spiking input, V,, from the middle neuron
stabilized the synchronous state when the synaptic time-

constant, 7,

is sufficiently short. To study the affect of a
single pre-synaptic spike on two identical neurons, with
nearby trajectories along the limit cycle, introduce new
variables: V =V, -V and R =R, - R;. These new variables
correspond to a perturbation transverse to the synchro-
nized state: {V,, R,}. Using Egs. (1), (3) and (4), the lin-

earized dynamics are:

Lfi_‘t/ - _”(Vo)ﬁ—h(VOrRo)V_5(t5 /Tom )exp(—ts [Tm )‘7
(5)
dR 1, - 5
= (R-m(Vo)V ) (6)
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where n(Vy) = 26 (Vy + 0.95), h (Vo R,) = (-5.03 +

101.4 V§ -32.45V,+ 26R,), and m(V,) = -(3.8 + 6.6V,).
denotes the time since the arrival of the last spike from the
center to outer neurons. Equation (5) is valid for a short
synaptic time constant, when only the effect of the last
presynaptic spike is significant (see Fig. 3). During an
inter-spike interval of the outer cells, n, h and m are all
positive. This can be easily confirmed by using Fig. 2,
where -0.8 <V < -0.6 and .18 <R < 0.4 during the inter-
spike interval, and calculating the lowest possible values
of n, h and m for a given range of V,and R,. Since { V, R }
denote the difference between the two nearby trajectories
along the limit cycle, there is a relationship between the
two variables given by

R(t) = —I(Vy)V () (7)
where [ is the negative of the slope of the limit cycle at
{V,(t), Ry(t)}. From Fig. 2, I(V,) = 2 during the inter-spike
interval. The above equation is valid as long as two nearby
trajectories remain on the limit cycle.

The dynamics of V along a limit cycle can now be calcu-
lated by substituting Eq. (7) into Eq. (5), dividing by V,
bringing dt over to the right-hand side of the equation and
integrating. For a small synaptic time constant, 7,,, <1, the
width of a duration of a post-synaptic spike, At, is short
compared to the time-scale of neuronal dynamics of outer

cells during the inter-spike interval. Here, At measures the
duration of a conductance spike, (¢,/ 1'52),,,) exp (-t/ 7).
which is quite narrow for sufficiently fast synapses (see

Fig. 3). Thus most of the change in V during the narrow
post-synaptic spike is due to the spike itself. This can be
seen by considering a voltage difference of two nearby tra-
jectories at time t + At in the absence of synaptic input:
V,(t+At) = V(t)exp(At(nl —h)), with n and h defined
after Eq. (6) and I given in Eq. (7). This expression was
obtained by substituting Eq. (7) into Eq. (5) and integrat-
ing over At while assuming that V|, stays almost constant

over At. Since At is small, we have |At (nl - h)| << {1, &}.
So that only the conductance term in Eq. (5) makes a sig-

nificant contribution to V during the duration, At, of a
post-synaptic spike. Dividing Eq. (5) by V and integrat-
ing, we get

http://www.nonlinearbiomedphys.com/content/1/1/2

V(t+At) = V(t)e™ (8)

The above equation gives a change in V following a syn-
aptic change in conductance. Using Eqgs. (6)-(8), the

dynamics of R immediately following a narrow post-syn-
aptic spike can be approximated as

d—Rzi(—H(MJe“s ]fe 9)
it 5.6 (V)

From Eq. (8), a single presynaptic spike from a center neu-
ron acts to decrease the voltage difference, V , of the outer
neurons by a factor of exp(-0). This presynaptic spike also

decreases R by decreasing the positive contribution from
the m/l > 0 term in Eq. (9). Thus the immediate effect of a
presynaptic input is to decrease the perturbation from
synchronized state of the outer neurons, pushing their tra-
jectories closer in phase-space.

Egs. (8) and (9) show that a spiking input from the mid-
dle neuron has a stabilizing affect on the synchronized
state when the synaptic time constant is short. Since the

difference in trajectories, V, R is taken along a limit
cycle, the maximum Lyapunov exponent in the absence of
synaptic coupling would be zero (corresponding to the
displacement along a trajectory in phase-space), and the
transverse exponents must be negative since the trajectory
collapses onto a limit cycle. It follows that, for sufficiently
small 7y, a common synaptic input acting during the

inter-spike interval should eventually synchronize the
neurons, even for weak synaptic coupling.

Figure 8 shows the synchronization of the outer neurons
for a very short synaptic time constant, 7, = 0.03 and
weak coupling, J = 0.5. After the transients die out, the
outer neurons become synchronized, thereby falling on a
straight line in the V, vs V; plot. As can be seen in Figure
6, for weak coupling, there is a big difference in firing rate
between the outer and the middle neuron, due to differ-
ences in injected current. It follows that the synchroniza-
tion is not due to phase-locking between the middle and
the outer cells. The effect of the spiking input on the limit
cycle trajectory can be seen at the bottom of Figure 8.
There is an integer ratio between the inner and the outer
frequencies, whereby the onset of a spike in the outer neu-
ron is triggered by spiking input from the middle one,
delivered toward the end of the inter-spike interval. The
phenomena is similar to the subharmonic resonance
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where the limit cycle responds at a subharmonic of the
stimulus frequency [14].

Egs. (8) and (9) show a sensitive dependence of synchro-
nization on the coupling strength from the middle to the
outer neurons. This is confirmed by numerics. Figure 7
shows V; vs V; for two slightly different values of ¢, 6 =
1.02 and 6= 1.03. A slight change in §leads to an onset of
synchronization between the outer neurons.

4 Conclusion

Synchronization of nearby cells is often the result of
receiving common input, such as when a pyramidal cell
sends projections to a targeted area in the cortex [3]. While
pyramidal cells tend to target specific areas, matrix projec-
tion cells from the thalamus reach in a diffuse manner
into adjacent cortical areas helping to synchronize the
activity of large populations of cells [3,20]. The three neu-
ron scheme investigated in this paper is a simple model
for studying these types of hierarchical networks, since it
incorporates this phenomena of synchronization of cer-
tain areas of the brain (outer neurons) due to common
input from a different area (middle neuron), and since
synchronization of the two outer neurons would indicate
synchronization of many neurons, if coupled to the mid-
dle neuron in the same way as the two outer neurons in a
three neuron model.

This model of three mutually coupled cortical neurons
with delays was studied using analysis and numerical sim-
ulation. The outer neurons were stimulated with smaller
current and had a much lower firing frequency in the
uncoupled case, with their frequency significantly increas-
ing depending on the strength of synaptic coupling with
the middle neuron. At higher values of the synaptic cou-
pling constant, typical phase-locked behaviorand 1: 1 fre-
quency locking was found between the middle and the
outer neurons, with different frequency locking ratios as
the synaptic strength was lowered. It was found that
delays affected the time-series data by introducing correla-
tions at the time-scale of the delay. While the spiking
behavior in the synchronized case was fairly regular, this
effect would be interesting to explore for a more compli-
cated, chaotic spike train that can be achieved by incorpo-
rating slow adaptation currents into the neuron model. In
the case of phase or frequency locking, the middle neuron
leads the outer by the delay time, 7.

While synchronization of outer neurons was sensitive to
the synaptic strength, the synaptic time constant of outer
neurons, 7, was also highly significant. It was found that
shorter synaptic constant substantially improves correla-
tions, leading to zero-lag synchronization of end neurons
even when the coupling strength is very weak. A short syn-
aptic constant was also able to significantly increase firing

http://www.nonlinearbiomedphys.com/content/1/1/2

rate, to the point of inducing 1 : 1 frequency locking with
the middle neuron, at a much weaker mutual coupling
than would otherwise occur for the input currents used.
Analysis of dynamics for fast synapses showed that fast
synaptic input during the inter-spike interval stabilized
the synchronization manifold, even for arbitrarily weak
coupling, and independent of the phase relationship
between the inner and outer cells. This indicates that even
a very weak synaptic input can synchronize cells, as long
as the synaptic time constant is suficiently short. The find-
ing may have significance in synchronizing large groups
of cells in the cortex via weak synaptic input from other
areas, such as the thalamus, or other areas in the cortex
proper.
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