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Abstract
Background: Investigation of the functioning of the brain in living systems has been a major effort
amongst scientists and medical practitioners. Amongst the various disorder of the brain, epilepsy
has drawn the most attention because this disorder can affect the quality of life of a person. In this
paper we have reinvestigated the EEGs for normal and epileptic patients using surrogate analysis,
probability distribution function and Hurst exponent.

Results: Using random shuffled surrogate analysis, we have obtained some of the nonlinear
features that was obtained by Andrzejak et al. [Phys Rev E 2001, 64:061907], for the epileptic
patients during seizure. Probability distribution function shows that the activity of an epileptic brain
is nongaussian in nature. Hurst exponent has been shown to be useful to characterize a normal and
an epileptic brain and it shows that the epileptic brain is long term anticorrelated whereas, the
normal brain is more or less stochastic. Among all the techniques, used here, Hurst exponent is
found very useful for characterization different cases.

Conclusion: In this article, differences in characteristics for normal subjects with eyes open and
closed, epileptic subjects during seizure and seizure free intervals have been shown mainly using
Hurst exponent. The H shows that the brain activity of a normal man is uncorrelated in nature
whereas, epileptic brain activity shows long range anticorrelation.

Background
The brain is a highly complex and vital organ of a human
body whose neurons interact with the local as well as the
remote ones in a very complicated way [1-4]. These inter-
actions evolve as the spatio-temporal electro magnetic
field of the brain, and are recorded as Electroencephalo-
gram (EEG) [1,4-6]. Though the detail link between EEGs
and the underlying physiology is not well understood, the
former is widely used for detection and prediction of epi-
lepsy, localization of epileptic zone and characterization

of the pre and post-ictal [1,6,7] using linear and nonlinear
analysis techniques [1,6-11]. Though mainly nonlinear
methods have been applied to predict the onset of epilep-
tic seizure and localizing epileptic regions, limited
progress has been achieved so far [11]. Even some nega-
tive results have also been reported like linear measures
are better than nonlinear measures [12,13], seizure is not
a low dimensional process [14], it lacks determinism
[8,15,16], etc. Hence finding proper analysis techniques is
also one of the main issues and experts try out different
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analysis tools for characterizing the normal and diseased
brain states, especially the epileptic brain.

In 2001, Ralph G. Andrzejak, et al. and later some other
authors [17,18] have analyzed five sets of EEG signals [19]
each set containing 100 epochs to study the determinism
in the brain dynamics for five different physiological and
pathological conditions. Sets A and B are for normal per-
sons with eyes open and closed respectively and recorded
extracranially. Sets C and D were recorded intracranially
from the hippocampal formation which was nonepile-
togenic of the opposite hemisphere of the brain and from
within the epileptogenic zone of an epileptic patient dur-
ing seizure free intervals respectively. Set E was recorded
intracranially from the epileptic zone during seizure. The
details of the experiments and the conditions have been
described in Ref [1]. R.G. Andrzejak, et al. [1] had shown
that the normal healthy subject with eyes closed and open
shows stochastic behavior using amplitude adjusted Fou-
rier transform surrogate analysis where discriminating sta-
tistics were the effective correlation dimension and
nonlinear prediction error whereas, using delay vector
variance discriminating statistics, significant nonlinear
determinism was shown in the same subject [17]. So two
conflicting results were obtained for the same subject
using nonlinear methods. In the case of epileptic patients
during seizure and seizure free intervals, determinism was
shown using two different methods [1,17] though other
studies show lack of determinism for different epileptic
patients during seizure [12,15,16,20].

On the other hand, characterization of EEGs by scaling
properties of the signal is also a major area of research
interest [8-10,21-27]. Power spectral exponent has been
used to characterize the different subjects with different
physiological conditions [8,9,24,25] and the same expo-
nent has also been used to estimate the correlation dimen-
sion (Dcorr) [8]. Fractal dimension and hurst exponent
have also been used to characterize the EEGs [26,27].
Hence a number of experts prefer scaling properties to
characterize EEG for different physiological and patholog-
ical conditions [8].

In this paper, we have reinvestigated the EEG data studied
in Refs. [1,17,18] by random shuffled surrogate analysis
using Dcorr as discriminating statistics in order to find
determinism in the signal [28-30] and the results have
been compared with earlier analyses [1,17]. Probability
distribution function shows a difference between normal
and epileptic brain states and this has been discussed in
latter Section. Finally, we have quantified the five different
physiological brain states by Hurst exponent (H) which
has been estimated using R/S analysis [31].

Results and discussion
Surrogate analysis
Surrogate analysis determines the dynamics in the time
series: whether it is governed by stochastic or determinis-
tic process [28-30].

The surrogate data has been generated by Random Shuf-
fled (RS) surrogate method, in which the signals were
shuffled randomly so that the probability distribution is
same but the temporal correlations are destroyed
[28,29,32]. Dcorr which gives us a measure of the complex-
ity has been estimated for both the original and the surro-
gate data of the data sets A, B, C, D, and E respectively. Fig
1(a) shows that the Dcorr increases with the same trend for
both the original [Fig 1(b)] and the surrogate data [Fig
1(c)] for the normal persons with eyes open [Set A]. A
similar trend is observed in the case of the persons with
eyes closed, i.e., for Set B [Fig 2(a)]. This shows that the
brain activity of a normal person is stochastic in nature
agreeing with the analysis by Andrzejak, et al. [1]. For an
epileptic patient we found a different behavior during sei-
zure free intervals and during seizure activity. The EEG sig-
nals, at seizure free state, recorded both from the
hippocampal formation of the opposite hemisphere of
the brain [Fig 2(b) Set C] and within the epileptogenic
zone [Fig 2(c) Set D] show almost same trend in the
increase in Dcorr for the surrogate data as well as for origi-
nal data, except for a small separation at higher embed-
ding dimensions, which may be due to a high
dimensionality of the system. During seizure activity [Fig
2(d) Set E], Dcorr saturates with embedding dimension
indicating low dimensional deterministic dynamics and

Surrogate analysis for data Set AFigure 1
Surrogate analysis for data Set A: (a) Variation of Dcorr 
with m. Black dot for (b) Original data; and triangle for (c) 
Surrogate data.
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these results agrees well with previous analyses [1,17]. For
sets A-D, as there is no saturation in Dcorr at higher embed-
ding dimension [Fig 1(a) and Figs 2(b)–(d)] and hence it
is difficult to estimate actual Dcorr. In Ref [1]Dcorr was com-
puted based on quasiscaling regions, but such an estima-
tion is very much dependent on the variations of the time-
frequency-energy characteristics rather than any nonlinear
dynamics. Hence this may be inadequate to characterize
epilepsy or diseased brain states for clinical application
[33].

Probability distribution functions
As we have observed from the surrogate analysis that non-
linear dynamics is responsible for epileptic patients dur-
ing seizure, we have compared the probability
distribution function (PDF) of a normal case and an epi-
leptic person during seizure. The PDF for sets A and E have
been shown in Figs 3(a) and 3(b) respectively. Fig 3(a)
shows that for a normal healthy person with eyes open,
the PDF is Gaussian in nature, whereas for epileptic
patients during seizure, it is nongaussian [Fig 3(b)] signi-
fying an intermittent nonlinear effect. But for other three
cases this feature is not so clear. So we feel that the PDF
may also be useful to differentiate a brain activity of an
epileptic patient during seizure from other state.

Hurst exponent
Since one of the major emphasis of epilepsy investigation
is to predict their occurrence, it is necessary to know how
the data is correlated. We have carried out a study of the
Hurst exponent (H) which has been estimated using Res-
caled range analysis (R/S). This method was proposed by
Hurst and well established by Mandelbrot, and Wallis
[31]. For a given set of data series, R/S is defined as
[31,34]:

Here , where ,

S2(n), and n are respectively the mean, variance, and time
lag of the signal. The expected value of the R/S scales like

cnH as n → ∞, where H is called the Hurst exponent, and
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Correlation dimension: (black dot with a dash either side for original data) and (black star with a dash either side for sur-rogate data) for data Set B, C, D and EFigure 2
Correlation dimension: (black dot with a dash either 
side for original data) and (black star with a dash 
either side for surrogate data) for data Set B, C, D 
and E.

Typical PDF for normal person with eyes closed (up) and for epileptic patient during seizure (bottom)Figure 3
Typical PDF for normal person with eyes closed (up) 
and for epileptic patient during seizure (bottom).

Typical R/S vs lag n plotFigure 4
Typical R/S vs lag n plot.
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can be estimated from the slope of typical plot  vs lag

(n). For a given signal, we divided the data into nonover-
lapping blocks of equal length and R/S has been calcu-
lated using the Equation 1 and the average value of R/S
has been plotted as a function of lag in a log - log plot as
shown in Fig 4 and estimated H from the slope of the
curve. For random data H = 0.5, while H > 0.5 for the data
with long range correlations, and H < 0.5 indicates the
presence of long-range anticorrelation or antipersistency
in the data.

The estimated average Hurst exponent (<H >) with an
error bar of 100 epochs for all the five EEG data sets (viz.
A-E) have been shown in Fig 5. The solid box and black
dot show the <H > for sets A and B respectively. For a nor-
mal person with eyes open (set A), the average H (<H >)
≈ 0.47 whereas, for the data set B, i.e., for a normal person
with his eyes closed, <H > ≈ 0.41. The <H > ≈ 0.5 for a nor-
mal man with eyes open indicates that the signals are
uncorrelated over long time scales signifying stochasticity
of the normal brain. But with eyes closed state, decreases
in H (<H > ≈ 0.41) may be due to the imposition of some
extra constraint, which may influence the system towards
an antipersistent state. The <H > for epileptic patients are
shown by up triangle for set C; star for set D; and down tri-
angle for set E respectively. <H > ≈ 0.34 and 0.29 for the
EEGs recorded at the hippocampal formation and epilep-

tic zone for the seizure free intervals of epileptic patients
respectively and during seizure (data set E), we get the
lowest H (<H > ≈ 0.19). The H for epileptic patient during
seizure and seizure free intervals show anticorrelation
which may be due to epileptiform discharges during sei-
zure free intervals indicating that a large discharge is
always followed by a small one. The physiology behind
the epileptiform discharge is due to the chronic dysfunc-
tion or "defect" in the epileptic brain, i.e., the epileptic
brain is not normal even during seizure free time [35].
Though the hippocampus was nonepileptogenic for these
subjects, its H is still less than a normal person which may
be due to its participation in secondary, nonautonomous
epileptic processes initiated by the epileptic zone [1]. The
wide dispersion in H for the EEG recorded from the epi-
leptic zone in seizure free intervals (star) indicates that the
epileptiform discharges are intermittent probably due to
the chronic presence of abnormal epileptogenic tissues
[36,37]. EEG recording during seizure may not be eco-
nomical and hence it may be better to locate epileptic
zone by recording EEG during seizure free intervals. These
analyses show the possibility of detecting the onset of the
seizure state from the time dependent Hurst exponent
estimated during the transition from normal to seizure
state [35]. Fig 6 shows the Hurst exponents for all the
epochs of five different sets that have been discussed
above.

R n
S n

( )
( )

Average H with standard deviation error bar, Hurst expo-nent for hundred time series and average H are represented by: square for normal men with eyes open [set A]; black dot for normal men with eyes closed [set B]; triangle and star are for the epileptic patients during seizure free interval from two different locations [set C and D]; upside down triangle for the epileptic patients during seizure [set E]Figure 5
Average H with standard deviation error bar, Hurst 
exponent for hundred time series and average H are 
represented by: square for normal men with eyes 
open [set A]; black dot for normal men with eyes 
closed [set B]; triangle and star are for the epileptic 
patients during seizure free interval from two differ-
ent locations [set C and D]; upside down triangle for 
the epileptic patients during seizure [set E].

Hurst exponent for hundred epochs and average H are rep-resented by: black square and black line for set A; red dot and red line for set B; blue triangle and blue line for set C; green star and green line for set D; pink upside down triangle and pink line for set EFigure 6
Hurst exponent for hundred epochs and average H 
are represented by: black square and black line for 
set A; red dot and red line for set B; blue triangle and 
blue line for set C; green star and green line for set 
D; pink upside down triangle and pink line for set E.
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Conclusion
In this paper we have reinvestigated the EEG data of nor-
mal and epileptic subjects to get an insight into the brain
dynamics at different imposed and diseased conditions
using RS surrogate analysis, PDF and H exponents. From
these analysis we have found that RS and PDF may be use-
ful to find a broad difference between normal and epilep-
tic subjects but not helpful for constrained and seizure
free intervals. Whereas, using H exponent, we have
obtained differences in characteristics for normal subjects
with eyes open and closed, and epileptic subjects during
seizure and seizure free interval. The H shows that the
brain activity of a normal man is uncorrelated in nature
whereas, epileptic brains show long range anticorrelation.
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