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Abstract
Drugs designed for a specific target are always found to have multiple effects. Rather than hope that
one bullet can be designed to hit only one target, nonlinear interactions across genomic and
proteomic networks could be used to design Combinatorial Multi-Component Therapies (CMCT)
that are more targeted with fewer side effects. We show here how computational approaches can
be used to predict which combinations of drugs would produce the best effects. Using a nonlinear
model of how the output effect depends on multiple input drugs, we show that an artificial neural
network can accurately predict the effect of all 215 = 32,768 combinations of drug inputs using only
the limited data of the output effect of the drugs presented one-at-a-time and pairs-at-a-time.

Background
One mission of Nonlinear Biomedical Physics is to pub-
lish "suggesting articles" that illustrate the application of
new nonlinear paradigms to the solution of problems in
biology and medicine. Our goal in this "suggesting arti-
cle" is to suggest a new way to think about medical thera-
pies and drug discovery to cure human diseases.

Our long experience with linear systems has led us to
believe that one well defined cause can be associated with
a single, well defined, identifiable effect. Around 1900,
Paul Ehrlich applied this approach to medicine. He
coined the phrase "magic bullet" for his search for the cure
of syphilis to mean a chemical that would attack only the
syphilis bacteria and spare the host tissue completely
[1,2]. Over these last hundred years medicine has focused

on finding the single therapeutic intervention that would
be the most efficacious with the fewest side effects.

But we know that biology is not linear, it is a network of
highly nonlinear genomic and proteomic interactions.
Some genes express protein transcription factors that bind
to other genes (or other transcription factors) that regulate
the expression of other genes. Proteins serve as reactants
or products in complex networks of biochemical reactions
or as enzymes catalyzing reactions. Everything is con-
nected to everything else. In this beautiful and tangled
complex web any therapeutic interaction spreads
throughout the entire network of interactions. There is no
single effect that can be associated with a single cause. A
single therapeutic intervention does not produce a single
desired effect, it produces many "side effects."
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Rather than struggling against the complex biological net-
work of interactions and trying to find magic bullets that
hit only their selected targets and nothing else, we pro-
pose here to use the wonderful tangled complexity of the
biological network to our advantage. By understanding
the biological network of interactions, or more practically
by determining enough of its properties from limited
experimental data, we should be able to predict which
multiple inputs into the network will interact with each
other, in just the right way, to produce the specific effects
that we seek to achieve with the fewest unwanted side
effects. We call this new approach Combinatorial Multi-
Component Therapies (CMCT). In this paper we illustrate
this approach using a well-defined mathematical nonlin-
ear model of a biological network to show how computa-
tional approaches can be used to analyze relatively
limited information about the effects of drugs presented
one-at-a-time and pairs-at-a-time, to determine the com-
binations of these drugs that will have the most desired
effects.

Motivation
The specific project described here was motivated by two
applications. The first application involved the use of RNA
interference (RNAi) technology, where the injection of
double stranded RNA can silence the expression of genes
with complementary sequences [3-5]. Thus, specific RNAi
could in principle, be used to turn off the expression of
specific targeted genes to produce specific therapeutic
effects. But many genes express protein transcription fac-
tors (or co-transcription factors that work together with
other transcription factors) that bind to the regulatory
regions of genes which increase or decrease the expression
of those genes. Thus, there is a complex Transcription Reg-
ulatory Network (TRN). The effect of changing the expres-
sion of any one gene will likely cascade throughout the
TRN effecting the expression of many other genes. Thus,
each RNAi targeted to silence a specific gene could effect
many different genes and produce many different effects
on the phenotype of a cell. How can this tangled web of
interactions be understood and even used to our advan-
tage to develop novel therapies? It was proposed to meas-
ure how the phenotype of a cell depends on the RNAi of
many different genes presented one-at-a-time and in
pairs-at-a-time. Comparing the dependency of the pheno-
type measure determined from a linear model where the
RNAi was presented one-at-a-time to the actual results of
the RNAi presented in pairs-at-a-time, would give impor-
tant information on the nonlinear interaction of the genes
across the TRN. In the spirit of the CMCT approach pre-
sented here, we asked whether we could use the limited
information about the effects of the RNAi presented one-
at-a-time and pairs-at-time to predict what combination
of all RNAi's would maximize or minimize the phenotyp-
ical effect.

The second application involved the use of combinations
of drugs in chemotherapy to treat cancers. Patients with
similar types of tumors, as identified by biomarkers, are
given different combinations of therapeutic agents. In the
spirit of the CMCT approach presented here, we asked
whether we could combine this heterogeneous informa-
tion from the effects of different combinations of drugs in
different patients to design the best mix of agents to treat
different types and stages of cancers.

Approach
Our goal in this paper is to test the concept that computa-
tional approaches using relatively limited data on the
effects of inputs into a model nonlinear biological net-
work can be used to accurately predict what combinations
of inputs would produce a maximal or minimal effect. A
successful test of this concept would then open the door
to using similar computational approaches on actual
experimental or clinical data to develop actual Combina-
torial Multi-Component Therapies.

We constructed a number of different linear and nonlin-
ear mathematical models of how the effective outputs of
a biological network depend on the input drugs into the
network. We then used those models to generate "data" of
the output response to inputs presented one-at-a-time and
pairs-at-a-time. From this limited data set, we then used a
computational approach to predict what outputs we
would expect for all combinations of inputs. We then
compared those predictions with the exact result from the
model. We found that for a (reasonably) realistic model of
how the outputs depend on the inputs, our computa-
tional approach could accurately predict the outputs
expected of all combinations of inputs.

Methods
We tested a number of different mathematical models of
how the output effects, fi, of a biological network depend
on the drugs, di, presented as the inputs into the network.
These included a linear model,

fi = ai1d1 + ai2d2 + ai3d3  + ... (1)

two nonlinear models that could be transformed into lin-
ear models by a logarithmic transformation,

and a nonlinear model that cannot be simply transformed
into a linear model by a logarithmic transformation,

f ei
a d a d a di i i= + + +[ ...]1 1 2 2 3 3 (2)

f d d di
a a ai i i= [ ] [ ] [ ] ...1 2 3

1 2 3 (3)
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Each term in the model of eq. (4) is typical of an excitatory
or inhibitory biochemical reaction that reaches a plateau
as shown in Fig. 1. The output effect, fi, is the product of
all these terms. For all these models, we determined how
a limited amount of data, namely, the output effects, fi,
computed by the inputs, di, presented one-at-a-time and
pairs-at-a-time, could be used to predict the outputs
resulting from all combinations of inputs.

For the studies reported here we concentrate on the results
that we obtained from the model in eq. (4) because it con-
tains four important features typical of biological net-
works, namely: the simultaneous existence of both
excitatory and inhibitory interactions, nonlinearities in
the response of each node of the network, separation of
scales, and nonlinear interactions between the nodes of
the network. We now describe each of these four proper-
ties in more detail. 1) Networks of exclusively excitatory
connections soon reach stable stationary states. For exam-
ple, the dynamics of a network of nodes whose linear
interactions are modeled by an adjacency matrix with
only positive values converges to a fixed stable set of val-
ues of the nodes [6]. The complex dynamics in time of liv-
ing systems are a result of mixed excitatory and inhibitory
feedback which is found, for example, in the excitatory
and inhibitory synapses between neurons in the nervous
system, in the excitatory and inhibitory actions of tran-
scription factors binding to DNA in gene expression, and
in the excitatory and inhibitory actions of ligands binding
to signal transduction proteins. In eq. (4) this is repre-
sented by including both positive and negative values of
bij. 2) The effects of such electrical or chemical excitation
and inhibition, are typically linear at low input levels, but
then saturate at higher levels. The dependence of the out-
put can be a highly nonlinear function of the input. The
simplest way that such a nonlinearity can be incorporated
is in the form of an exponential dependence which is
done in eq. (4) through the exponential terms and their
parameters bij. 3) Biological networks also display
dynamics over a broad range of concentration, spatial, or
temporal scales. For example, developmental cascades,
gene expression, signal transduction, and biochemical
protein modifications respectively take place over time
scales of years, minutes, seconds, and milliseconds [7].
The range of concentration scales is represented in eq. (4)
by choosing the parameters bij to be in a geometric pro-
gression so that the exponential dependence on the inputs
covers a wide range of concentrations. 4) The effects
induced by different genes and proteins are typically non-
linear rather than being simply additive. This is repre-

sented in eq. (4) by multiplying the effects of each term
together, rather than adding them together. We cannot
guarantee, and do not intend, this model to be a quanti-
tate description of the RNAi or chemotherapy networks
that motivated these studies. Rather, those two biological
networks, and many others, are likely to have the same
four general characteristics that are represented in the
choice of the functional forms used in the model of eq.
(4). Therefore, using this test model may give us results
that would be representative of many different biological
networks.

Given a limited set of data, many different computational
approaches could be used to predict the output effects
produced by different combinations of inputs. We choose
to use an artificial neural network [8-11] because: 1) it can
approximate any nonlinear input-output function (with a
finite number of discontinuities) so that we do not need
to assume any a priori functional form for the input-out-
put relationship, and 2) there are well defined procedures
to use the limited data to train the network (that is, to
determine its parameters). Other computational
approaches would be to fit the output effects produced by
increasing numbers of inputs with a series of increasingly
nonlinear functions, for example algebraic functions [12].
The advantage of the latter approach is that constraining
the functional form makes it simpler and more reliable to
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Each line in this graph shows how the output effect (vertical axis) of each term in the test model of eq. (4) depends on the drug input (horizontal axis)Figure 1
Each line in this graph shows how the output effect (vertical 
axis) of each term in the test model of eq. (4) depends on the 
drug input (horizontal axis). As can be seen, some drug 
inputs are excitatory (monotonically increasing) and others 
are inhibitory (monotonically decreasing). The combined 
output effect, fi, of all the input drugs is the product of all of 
these terms.
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use the limited data set to determine the parameters of
that functional form. The disadvantage is that we may
choose a functional form that is not a good match to the
biological or model network. For this reason, namely, that
we did not want to make any a priori assumptions about
the input-output relationship, we chose to use the artifi-
cial neural network.

The artificial neural network that we used, is shown sche-
matically in Fig. 2. It is a feed-forward three layer network
consisting of input units in the first layer (N = 1), which
are then connected to units in a "hidden layer" (N = 2),
which are in tern connected to units in an output layer (N
= 3). (The hidden layer gets its name from the fact that it
does not receive inputs directly from the outside world
nor does it provide outputs to the outside world.) The
value of the j-th unit in layer N+1 is determined from the
value of the units in the previous layer N by

where Wi, j
N are the connection weights, Bi

N are the biases,
and the transfer function f is given by

where c is a constant and typically c = 1. In principle,
according to Kolmogorov's Theorem [8], such a network
with n inputs, 2n +1 units in the hidden layer, and m units
in the output layer can approximate any nonlinear input-
output function of [0,1]n --> Rm. The algorithm of back-
propagation [8,11] can be used to determine the parame-
ter set of the weights and biases, Wi, j

N and Bi
N, that best

reproduce the limited amount of data in the training set,
and hopefully will also make the best predictions of the
output effects for new combinations of the inputs of the
test set.

The artificial neural network was implemented in the Mat-
lab Neural Network Toolbox [13] on a Macintosh Dual
2.5 GHz PowerPC G5 computer with MacOS 10.3.9. The
test model for the dependence of the output effects on the
input drugs was given by eq. (4) with aij = 1 and bij = 2, -
2, 1, -1, 1/2, -1/2, ... . We used up to n = 15 units in the
input layer, corresponding to up to 15 independent drugs.
All the values of the inputs were either 0 or 1. The limited
data set used to train the network consisted of the output
effects computed from eq. (4) for all the inputs given one-
at-a-time or pairs-at-a-time. The Bayesian regularization
form of the backpropagation algorithm [14,15] imple-
mented by trainbr in Matlab [13] was used to train the
network, that is, to determine the parameters of the
weights and biases, Wi, j

N and Bi
N. Then those parameters

were used to compete the output effects for all possible
[0,1] combinations of the inputs and those results were
compared to the values computed directly from the model
in eq. (4). Four additional technical enhancements were
used to improve the convergence of the backpropagation
algorithm in training and the accuracy of the network in
computing the output effects of new inputs in the test set:
1) the number of outputs was reduced to one, 2) the trans-
fer function was softened from the input layer to the hid-
den layer by setting c = 4 in eq. (6), 3) the number of units
in the hidden layer was increased to 4n, and 4) the net-
work was trained and tested using the loge(outputs) which
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{ } tanh( )= (6) An artificial neural network was used to predict the output effects from all combinations of input drugs given limited informationFigure 2
An artificial neural network was used to predict the output 
effects from all combinations of input drugs given limited 
information. The value of each drug is presented to one unit 
in the first layer of the network. The values of the units in 
each next layer are computed from the values of the units in 
the previous layer according to eq. (5) and eq. (6). The 
parameters of the network, the weights and biases, Wi, j

N and 
Bi

N, are determined using the backpropagation algorithm to 
match the output effects from the input drugs presented 
one-at-a-time and pairs-at-a-time. Then the output effects 
are determined by presenting all possible combinations of 
drugs to the inputs. The network is represented here sche-
matically. In the study most fully described in the text, there 
were 15 input units, 60 hidden layer units, and 1 output unit.
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increased the accuracy by spreading out the output values
that were near zero.

Results
With the four additional enhancements described above,
the network with 15 inputs, trained only on inputs pre-
sented one-at-a-time or pairs-at-a-time, accurately com-
puted the output from all 215 = 32,768 combinations of
[0,1] inputs with high accuracy, that is, 99% of all the
input combinations were within 10% of the values of the
output effects of the model of eq. (4).

Summary
High throughput technologies are rapidly expanding our
experimental capabilities to delineate the structure and
dynamics of genomic and proteomic networks. With this
understanding, and with sufficient computational power,
we will be able to fully understand how single therapeutic
inputs spread throughout these networks producing a cas-
cade of effects. We will then be able to predict how multi-
ple simultaneous therapeutic inputs into these networks
will interact with each other, in just the right way, to pro-
duce specific targeted effects with reduced side effects.
This will make possible a new paradigm of Combinatorial
Multi-Component Therapies (CMCT) where we use the
complex web of nonlinear biological interactions to our
benefit, rather than fighting it in a frustrating search for
illusory single magic bullets.

In this paper, we showed the output effects of 15 inputs
presented one-at-a-time and pairs-at-a-time of a biologi-
cally reasonable model of a nonlinear network could be
used to accurately compute the output effects of almost all
the 215 = 32,768 possible combinations of inputs. This
suggests that computational methods, perhaps suitably
scaled up, may well be able to compute the effects of the
complex combinatorial multi-drug therapies based on rel-
atively limited experimental data. That is, we may not
even need to understand the full details of biological net-
works to implement a rudimentary, but useful, form of
CMCT.
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