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Abstract

on the EEG trace.

commonly used for drug effect detection.

Background: Changes caused by clonidine in rodent electroencephalograms (EEG) have been reported with some
inconsistency. For this reason, a pre-clinical study was conducted in order to confirm previous findings with both a
standard spectral analysis and a sleep stage scoring procedure. In addition, a nonlinear technique for analysing the
time-varying signals was implemented to compare its performance against conventional approaches.

Results: The nonlinear method succeeds in quantifying all dose-related responses from the data set relying solely

Conclusions: Nonlinear approaches can deliver a suitable alternative to the sleep-stage scoring methods

1 Background

The role of the noradrenergic system in sleep physiology
has been studied extensively using different pharmacolo-
gical approaches [1-5]. It is well established that the
non-selective alpha-2 agonist clonidine promotes non-
rapid eye movement (NREM) sleep in both humans and
rats mainly by activating presynaptic inhibitory autore-
ceptors and thereby inhibiting noradrenergic neuro-
transmission. However the specific changes caused by
clonidine directly in the EEG is less clear both in
humans and rats.

In humans, clonidine has been shown to cause
changes in the EEG [6-8]. have noticed that power is
increased in the 1.0-4.0 Hz range while decreased in the
8.0-12 Hz range. Recently published data suggest that
clonidine causes different effects on the EEG depending
on level of exposure [9]. In this study the authors
showed a significant decrease in power in the 0.5-12 Hz
band during rapid eye movement (REM) sleep only.

The findings with clonidine from rodent EEG studies
are equally ambiguous [10]. showed that clonidine
caused the power to decrease in the 0.1-4 Hz range and
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increase in the 4.1-8 Hz range compared to vehicle con-
trols specifically in the NREM sleep stage. In contrast,
[11] showed that the changes caused by clonidine were
characterized by a significant increase in nearly all the
frequency range from 1-30 Hz, with a peak at 13 Hz.
Whether these differences in the reported pre-clinical
and clinical findings with clonidine are only due to vary-
ing exposure levels or whether there are other additional
causes (e.g. definitions of bands in the human and
rodent studies, varying electrode derivations, changes
restricted to specific sleep stages) is unclear.

An EEG recording is the superposition of a number of
electrical signals eminating from various regions in the
brain. If all these activities generated perfect superposi-
tions of electrical sine wave oscillations then a linear
method like a Fourier transform would expose these
periodic components [12]. In the case of non-regular
time-varying signals, the task is considerably more com-
plex and requires several steps. Nonlinear approaches
aim first at detecting if a deterministic structure exists
in the waveform before any further calculations. The
presence or absence of determinism in a given data set
is the corner stone of its numerical analysis since it
completely defines which category of algorithms is
practicable.
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In terms of system dynamics, time series EEGs can be
viewed as 2-dimensional windows open to a m-dimen-
sional state space where time points repeat complex
cyclic patterns [13]. Since a reliable approximation of m
would help understand the underlying mechanisms
involved, algorithms designed to estimate this dimension
have been applied [14-16]. Although none of the tested
algorithms was able to deliver a definitive answer so far,
these numerical methods are capable of extracting use-
ful parameters for very specific phases like sleep [17-19],
epileptic [20], schizophrenic [21] or anaesthesia [22]
stages. These examples suggest that the measurement of
the EEG determistic aspect can quantify different epi-
sodes of brain activities by using nonlinear methods.

The aim of this study was to identify a sensitive non-
linear model of EEG analysis that can extract the phar-
macodynamic signal of clonidine from EEG recordings
from freely moving animals.

2 Materials and methods

All animal experiments were carried out in accordance
with the United Kingdom Animals (Scientific Proce-
dures) Act 1986 and associated guidelines and approved
by the local ethics committee. Rats were implanted with
radiotelemetry transmitters (Data Sciences International,
St Paul, MN, USA) intraperitoneally under isoflurane
anaesthesia for the recording of the EEG and electro-
myogram (EMG). The cortical EEG electrodes (stainless
steel screw electrodes) were implanted epidurally over
the left parietal cortex (2.0 mm anterior and 2.0 mm lat-
eral to lambda) and over the left frontal cortex (2.0 mm
anterior and 2.0 mm lateral to bregma) for a fronto-par-
ietal EEG recording [23-25]. The electrodes and leads
attached to the skull were covered with dental acrylic
and a second pair of electrodes was attached to the
neck muscles to measure general EMG activity needed
for the sleep stage analysis only. The rats were allowed
to recover from the implantation of the device for at
least 2 weeks, and the experiment was started once the
animals were certified fit to continue by a veterinary
surgeon. Animals were singly housed on a standard 12-
12 h light-dark cycle and received standard diet and
water ad libitum.

EEG and EMG data were continuously sampled at 250
Hz and the spectral upper limit was set at 40 Hz, with
Data Sciences International hardware and software for
12 hours immediately following administration of drug
at light onset. Animals were orally dosed with 0.03 (low
dose (LD)), 0.1 (medium dose (MD)) or 0.3 (high dose
(HD)) mg/kg clonidine or vehicle (VC) (0.5% w/v
methylcellulose + 0.1% v/v Tween 80) at light on-set in
a four way cross-over design with at least 48 hours
between each dose. Recording of EEG and EMG signals
began immediately after dosing. In addition to the

Page 2 of 7

Table 1 Sleep stage scoring principle

mod low EEG high EEG
low EMG REM NREM
high EMG WAKE WAKE

The modulus (mod) is defined as the absolute value of the area under the
curve from the EEG or EMG traces.

sampling of these two signals, a general activity measure
and core body temperature were collected in parallel.
Due to an archiving issue, not all the files were available
for the analysis.

Besides the nonlinear technique detailed below, a sleep
stage analysis was completed to identify potential corre-
lations between both outputs. A sleep stage discrimina-
tor was programmed whose logic is similar to a visual
analysis [24]: its algorithm is summarised in Table 1.

EEG traces were cut into 16.384 second epochs (2'*
points). Since one epoch of EEG data values tend to fol-
low a gaussian distribution the Kolmogorov-Smirnov
test was used to filter artefacts [26]: 2% of the epochs
were rejected from our data set. The integral local
deformation (ILD) time-embedding window algorithm
was implemented to evaluate the deterministic structure
of the data [27]; in this work a validation was carried
out against known systems [28].

For a given dimension m and time delay 7, the signal is
represented by points x(¢) = [vy, Ve s - vH(m_l),]Twhose
displacements are tracked and quantified according to the
homogeneity of their flow. If some unknown but determi-
nistic effects drive the data, they should produce a small
perturbation to a moving cloud of points as time passes
by: points on neighbouring trajectories remain neighbour-
ing points for small evolution times A as sketched in Fig-
ure 1[27]. The ILD algorithm calculates the average
deviation in terms of distance between points in a cloud
for a given (m, 7) couple (up to a normalisation factor).

To allow comparisons with published results, the data
analysis relied on a 0-40 Hz power spectrum to identify
drug-related signals in the raw EEG data. Efforts were
concentrated in distinguishing a clear effect in the EEG
down to the lowest administered dose of clonidine.

. Trajectories
Neighbour cloud of A(t) —
ILD distance —
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Figure 1 lllustration of the ILD measurement in 2 dimensions.

The distance between points A and B is computed at different

times and its variation used to estimate the overall deviation.
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Figure 2 Results of the ILD calculations on two different
epochs from rat 1/VC. Since a high plateau is reached faster than
a low one, the slope b correlates with the level of the plateau.

3 Results

The ILD procedure was run on every EEG epoch for
each dimension m € [2,12] and time delay 7z € [4,80] in
ms (in 4 ms increment) as input parameters. Plots iden-
tical to Figure 2 were generated to perform visual verifi-
cation; from these data two groups were identified:

1. where the plateau of the graph is lying high
around 0.5.

2. where the plateau of the graph is lying low around
0.2.

From a time-embedding perspective there is no local
minimum, that is to say no time delay r which induces a
minimal deviation. The ILD curves systematically reach
a plateau after a few iterations. The dimension was arbi-
trarily fixed at m = 12 since all the plots produced with
a dimension estimation m greater than 10 had their pla-
teaux converging.

Nevertheless these plots provide a quantification of
the structure of the signal and details are presented on
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how the steepness of the slope preceding the plateau is
a valuable measurement in terms of characterisation of
the time series. The ascending part can be modelled
with a simple linear a + bz fit of the first 6 points. The
value of b is therefore a measure of both the rate of the
convergence of the ILD computations and the height of
the plateau. If this nonlinear derived parameter b is
overlapped with the activity channel to investigate corre-
lations, as shown in Figure 3, four distinct (activity, b)
combinations are possible:

1. (null activity, high b) periods are regular through-
out the experiment (e.g. time intervals B, M, O, S).
They explain most of the main wide peaks in the
plot.

2. (null activity, low b) periods are distributed over
the time course (e.g. time intervals A, D, F, H, J, L,
N, P, R, T, V). They cause the recurrent flat parts in
the plot.

3. (non-null activity, high b) periods are quite short
and randomly localized (e.g. time intervals C, E, G, I,
K, Q, U), generating rather sharp peaks.

4. (non-null activity, low b) periods are quasi inexis-
tent in the experiments.

To demonstrate the potential of b at this early part of
the analysis, a 30-minute window (from 10 to 40 min-
utes) displays in all rats an average value that already
produces an inverse dose-response relationship (see Fig-
ure 4). This time frame is consistent with the pharmaco-
kinetic properties of clonidine reported by [29,30]:
clonidine dosed at 0.25 mg/kg peaks in the brain within
2 min and disappears at an average half-life rate of 70
min.

The discriminant function of b is improved by pairing
it with the normalised power of the ¢ band, defined as
the ratio of the power of the 0.5-4 Hz band to the 0-40
Hz band from a Fourier transform based spectrum.
Using o as the abscissa and b as the ordinate for each
epoch, vehicle plots display two clusters (WAKE/REM
vs NREM) whilst drug plots display mainly a diffused
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Figure 3 Activity and b overlap for rat 1/VC. Some recurring patterns are visible throughout the time course.
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Figure 4 Inverse dose-response signal obtained with the slope
parameter b within the 10-40 minute window.

cluster during the first six hours of the experiment as
seen Figure 5.

These two-dimensional patterns were quantified using
a fuzzy k-means clustering algorithm [31] taking into
account the following assumption: a 2 cluster input data
set, expected for the baseline condition, is bound to pro-
duce an outcome very different from a 1 cluster input
data set, expected for a drug effect, if fed into a 2 cluster
search. Each point is given a belonging probability pro-
portional to the inverse of its distance from the center of
a cluster. A clear-cut cluster gathers points with high
probabilities, that is to say close to its center, whereas a
diffused one encompasses points further away. Hence,
the quality of the output clustering is the measure of
interest: the area covered by the two clusters becomes
smaller when the amount of drug increases as seen in
Figure 6, but the total number of points remains approxi-
mately the same. The density of the clusters is then
greater with a drug onboard. This is the reason why the
average cluster density (ACD) criterium renders the clear
dose-response relationship observed in Figure 7.

Finally, the level of confidence in the (J, b) couple is
raised to a higher degree if the response exhibits a
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pharmacodynamic time response. A 6 hour sliding time
window reveals that the proposed measurement is quite
suitable as a pharmacological biomarker: Figure 7 shows
the evolution of the ACD over 12 hours for all 8 rats.
Since time is now a proper dimension, the curves can
be interpreted as pharmacodynamic profiles: the stack-
ing order of the escalated doses is preserved and the
drug effect disappears progressively with time. For the
sake of comparison, sleep stage distributions shown in
Figure 8 are more difficult to interpret.

4 Discussion

A common technique to detect drug impacts on EEGs
relies on sleep stage scores [32]: time proportions of
sleep stage periods [24] or powers per bands [23,32]
have demonstrated pharmacological effects. Ideally, from
a cost and time perspective, the pharmacodynamic effect
of a novel drug should be assessed in parallel to stan-
dard first in human (FIH) trials. This could potentially
be done with a sensitive automatic analysis based on
standard wake EEG recordings. However clinical sleep
architecture studies tend to be more expensive, mainly
due to the time it takes to run these studies in specialist
sleep centres. The detection of a pharmacological
response directly from the EEG trace would therefore be
the preferred solution in an early clinical trial, if
achievable.

Nevertheless, links to sleep stages are detailed here for
comparison purposes but not retained as part of the
final nonlinear analysis workflow. The normalised
powers of the different bands per sleep-wake stage dur-
ing the control condition also confirm the classic distri-
bution of the different frequency bands. For the vehicle
dose, a high power in the 6 band is associated with the
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Figure 5 Instances of (J, b) plots during the first 6 hours and their correlations with sleep/wake stages. The centers of the fuzzy clusters
coincides with the centers of the ellipses. The cluster density is an arbitrary measure of the number of points contained within an ellipse. The
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Figure 6 Average of the ACD for the first 12 hours. A clear
dose-response signal is visible. The individual cluster densities over
time are all plotted in Figure 7.

occurrence of NREM sleep stages and a 6 band power
dominates in REM sleep from a fronto-parietal electrode
configuration in rodents. The vehicle plot in Figure 5
shows that NREM epochs are synchronised with a high
0 and low b values (bottom right) whereas REM epochs
display lower J but higher b values (top left). One could
potentially rely of the localisation of each point in the
different regions of the graph to perform an a posteriori
sleep stage epoch scoring.
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Clonidine has been shown to reduce the firing of nor-
adrenergic neurons in the Locus Coeruleus (LC) via
autoreceptors, thus altering the input to the cortex and
causing a change in the texture of the recorded EEG sig-
nal, which might be reflected in the non-linear para-
meter b [10,33].

Table 2 supports the findings described by [10] that
the administration of clonidine caused an increase in
NREM sleep and a dose dependent decrease in d power
specifically in NREM sleep rather than a significant
increase of the total power as described by [11]. One
possible explanation for the discrepancy between the
different studies is that [11] recorded the effect of cloni-
dine locally in the prefrontal cortex, while both the out-
comes described in this study and those by [10] were
carried out with a similar fronto-parietal/occipital elec-
trode configuration.

Given a new drug, there is always a possibility that its
unknown effect might corrupt the usual sleep stage clas-
sifiers that are well defined for healthy subjects, but less
so for preclinical sleep scoring; as an example of
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Figure 7 Individual pharmacodynamic profiles obtained from the ACD time courses. The order of the escalating doses is maintained
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Figure 8 Sleep stage distributions. The NREM “rebound decrease”
reported by [10] is visible during the first hour. Nevertheless a
significant difference is only observed for the highest dose (see
Table 2).
- /

changes in the EEG signal irrespective of sleep stage see
[34].

Assumptions solely formed on sleep scores would then
be inconclusive. Continuous characterisations like the
nonlinear one presented above are likely to be more
robust in these particular cases.

This work fully supports the idea that nonlinear tech-
niques are valuable solutions for analysing EEG. The
results presented here are consistent as clonidine is
known to affect sleep [35] and nonlinear approaches are
known to discern sleep stages [28]. The combination
with the standard 6 band commonly associated with the
awake stage reinforces the plausibility of having
extracted a genuine signal from this data set.
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In conclusion, this study describes a generic mathema-
tical framework that can extract a pharmacodynamic
profile of clonidine from raw EEG data collected from a
fronto-parietal electrode derivation in freely-moving
rodents, which could offer an alternative approach to
study drug effects in early clinical trials. The model is
based on a numerical analysis tool whose field of appli-
cation is nonlinear dynamic systems. This innovative
approach can potentially provide a translatable analysis
methodology for assessing central pharmacodynamic
effect and bridge the preclinical and clinical EEG
observations.
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