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Abstract

In this paper we consider the fractional order model with two immune effectors interacting with two strain anti-
gen. The systems may explain the recurrence of some diseases e.g. tuberculosis (TB). The stability of equilibrium
points are studied. Numerical solutions of this model are given. Using integer order system the system oscillates.
Using fractional order system the system converges to a stable internal equilibrium. Ulam-Hyers stability of the sys-
tem has been studied.

1 Introduction
Immune system (IS) is known to be multifunctional and
multi-pathways i.e. a given function is performed by more
than one effector. And each effector, typically perform
more than one function [1]. This guarantees to a great
extent the resilience of the immune network [2]. Also many
antigens evolve with time hence they are multi strains. This
explains why some diseases re-appear e.g. tuberculosis (Tb).
Therefore modeling the interaction of two immune effec-
tors with two strain antigen is an important problem.
The use of fractional-orders differential and integral

operators in mathematical models has become increas-
ingly widespread in recent years [3]. Several forms of
fractional differential equations have been proposed in
standard models.
Differential equations of fractional order have been the

focus of many studies due to their frequent appearance
in various applications in fluid mechanics, economic,
viscoelasticity, biology, physics and engineering.
Recently, a large amount of literatures developed con-
cerning the application of fractional differential equa-
tions in nonlinear dynamics [3].
In this paper we study the fractional-order model with

two immune effectors interacting with two strain anti-
gen. In sec.2 we present the fractional-order model,
study their equilibrium and their local stability and solve
it numerically. In sec.3 the Ulam-Hyers stability is pre-
sented. In sec. 4 our conclusions are presented.

Now we give the definition of fractional-order integra-
tion and fractional-order differentiation:
Definition 1 The fractional integral of order b Î R+

of the function f (t), t >0 is defined by
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and the fractional derivative of order a Î (n − 1, n) of
f (t), t >0 is defined by
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The following properties are some of the main ones of
the fractional derivatives and integrals (see [3-9]).
Let b, g Î R+ and a Î (0, 1). Then

(i) I L La
 : 1 1→ , and if f (y) Î L1, then
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(v) If f (y) = k ≠ 0, k is a constant, then D k*
 = 0 .

The following lemma can be easily proved (see [7]).
Lemma 1 Let b Î (0, 1) if f Î C[0, T ], then Ibf(t)|t = 0 = 0

2 The fractional-order model
Let x1, x2 be two strains of an antigen and y1, y2 be two
immune effectors then the fractionalorder IS model is
given by:
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where 0 < a ≤ 1 and a1, a2, b1, b2, c1, c2, d1, d2 are
positive constants. The constants c1, c2 are the mutation
rates of the antigen strains.
There are several equilibria e.g. the zero equilibrium
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To study the stability we need the Jacobian matrix of
(3) given by:
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It is direct to see that the zero solution is unstable
(notice that by definition a1 > > c1, a2 > > c2, b1 > a1,
b1 > d1, b2 > a2, b2 > d2).
The numerical simulations of (3) are given in Figures

12345678 for a1 = 1.0, a2 = 1.0, b1 = 2.0, b2 = 2.0, c1 =
1.0 × 10−3, c2 = 1.0 × 10−3, d1 = 1.0, d2 = 1.0, x1(0) =
0.3, x2(0) = 0.5, y1(0) = 0.5, y2(0) = 0.3 and different 0 <
a ≤ 1.
In Figure 1 we take a = 1.0. In Figure 2 we take a =

0.9. In Figure 3 we take a = 0.85. In Figure 4 we take a
= 0.8. In Figure 5 we take a = 1.0. In Figure 6 we take
a = 0.9. In Figure 7 we take a = 0.85. In Figure 8 we
take a = 0.8. The relation between the two strains of an
antigen x1(t) and x2(t) are given in Figures 1234 for dif-
ferent 0 < a ≤ 1. The relation between the two immune
effectors y1(t) and y2(t) are given in Figures 5678 for dif-
ferent 0 < a ≤ 1.
The Figures 12345678 show that by using the integer

order system (a = 1) the system oscillates (Figures 1
and 5) and by using the fractional order system (0 < a
<1) the system converges to a stable internal equili-
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(Figures 234, 678). In Figures 234 the system converges
(0.5, 0.5). In Figures 678 the system converges to
(0.5005, 0.5005).

3 Ulam-Hyers stability for systems of equations
Ulam-Hyers stability studies the following question:
Suppose one has a function y(t) which is close to solve
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an equation. Is there an exact solution x(t) of the equa-
tion which is close to y(t)?. Mathematically the following
system can be studied ([10], [11]):

dx

dt
f x= ( ) (5)

the system (5) is Ulam-Hyers (UH) stable if it has an
exact solution and if ∀ε >0 there is
δ >0 such that if xa(t) is an approximation for the

solution of (5) then there is an exact
solution x(t) of (5) which is close to xa i.e.,

dx

dt
f x t

x t x t t

a
a
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This definition has applicable significance since it
means that if one is studying an UH stable system
then one does not have to reach the exact solution
(which usually is quite difficult or time consuming).
All what is required is to get a function which satisfies
(6). UH stability guarantees that there is a close exact
solution. This is quite useful in many applications e.g.
numerical analysis, optimization, biology and econom-
ics etc., where finding the exact solution is quite diffi-
cult. It also helps, if the stochastic effects are small, to

use deterministic model to approximate a stochastic
one.
We begin by realizing that UH stability is independent

of the more familiar Lyapunov stability which states that
the system (5) is Lyapunov stable if both x(t), y(t) are
exact solutions of (5) and for all ε >0 there is δ >0 such
that | x(0) − y(0) |< δ implies | x(t) − y(t) |< ε for all t >0.
A known counter-example proving the independence

of the two concepts is the system:

dx

dt
ax t a= >( ),   constant0 (7)

whose x = 0 solution is Lyapunov unstable while it is
UH stable [11].
UH stability has been studied for functional equations

[12], and linear differential equations [13].
Now we study local UH stability for nonlinear sys-

tems. Consider systems (5), (6), assume

y t x t h t( ) ( ) ( )  = + (8)

also assume that h(t) is small hence linearize in it.
Substituting in (5), (6) one finally gets

h t f x
dx

f x
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Thus we have:
Proposition (1): The system (5) is locally UH stable if

there is a constant K such that

f x
dx

f x
K( )

( )
.2∫ < (10)

.
For a system of equations

dx i t

dt
f i x x x i nn

( , )
( , , , , ), , , ,= … = …1 2 1 2   (11)

the system is Ulam-Hyers stable if the Jacobian matrix
of f with respect to x1, x2,..., xn is bounded non-singular.
Applying to the model (3) we conclude that the model
(3) is Ulam-Hyers stable (with a = 1).

4 Conclusions
Concluding, the model represents two immune effectors
interacting with two strain antigen. The systems may
explain the recurrence of some diseases e.g. tuberculosis
(TB). Using integer order system the system oscillates.
Using fractional order system the system converges to a
stable internal equilibrium. Ulam-Hyers stability of the
system has been studied.
Now we like to argue that fractional order equations

are more suitable than integer order ones in modeling
biological, economic and social systems (generally com-
plex adaptive systems) where memory effects are impor-
tant. From equation (1) it is clear that the fractional
order derivative at time t depends on the state of the
system at all time t′ ≤ t hence it naturally accomodates
the memory effects. This relation is discussed further in
[14].
Also it is known that fractional order derivatives is

naturally related to fractals [15]. It is known that fractal
structures are abundant in complex adaptive systems.
It is important to notice that Immune system (IS) is

known to be multifunctional and multi-pathways i.e. a
given function is performed by more than one effector.
And each effector, typically perform more than one
function [1]. Therefore realistic models require more
than one effector for the immune system [16]. This
aspect has been included in our model.
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