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Abstract

Background: The human menstrual cycle is known to exhibit a significant amount of unexplained variability. This
variation is typically dismissed as random fluctuations in an otherwise periodic and predictable system. Given the
many delayed nonlinear feedbacks in the multiple levels of the reproductive endocrine system, however, the
menstrual cycle can properly be construed as the output of a nonlinear dynamical system, and such a system has
the possibility of being in a chaotic trajectory. We hypothesize that this is in fact the case and that it accounts for
the observed variability.

Results: Here, we test this hypothesis by performing time series analyses on data for 7749 menstrual cycles from
40 women in the 20-40 year age range, using the database maintained by the Tremin Research Program on
Women’s Health. Both raw menstrual cycle length data and a formal time series constructed from this data are
utilized in these analyses. Employing phase space reconstruction techniques with a maximum embedding
dimension of 12, we find appropriate scaling behavior in the correlation sums for these data, indicating low
dimensional deterministic dynamics. A correlation dimension of Dc ≈ 5.2 is measured in the scaling regime. This
result is confirmed by recalculation using the Takens estimator and by surrogate data tests. We interpret this result
as an approximation to the fractal dimension of a strange attractor governing chaotic dynamics in the menstrual
cycle. We also use the time series to calculate the correlation entropy (K2 ≈ 0.008/τ) and the maximal Lyapunov
exponent (l ≈ 0.005/τ) for the system, where τ is the sampling time of the series.

Conclusions: Taken collectively, these results constitute significant evidence that the menstrual cycle is the result
of chaos in a nonlinear dynamical system. This view of the menstrual cycle has potential implications for clinical
practice, modelling of the endocrine system, and the interpretation of the perimenopausal transition.

Background
The prevailing biomedical view of the female reproductive
system, exemplified by the menstrual cycle, has tradition-
ally been that changes in various hormone levels cause
further well-defined changes in a cyclically repeating pat-
tern [1]. Despite this widespread view of menstruation,
however, the empirical data show a high degree of variabil-
ity that no current model accounts for [2]. Such variability
is usually discounted as being due to random factors of no
theoretical interest, but consideration of the dynamics
inherent in this system suggests another explanation. The
endocrine system governing the menstrual cycle has
multiple nonlinear feedback loops involving at least six

hormones produced by the ovaries, the pituitary gland,
and the hypothalamus. This system can be modelled as a
set of coupled nonlinear delay differential equations. Envi-
sioning the menstrual cycle in this way as the output of a
nonlinear dynamical system, chaotic solutions that would
account for the observed variability are a distinct possibi-
lity. This paper presents the results of an experimental test
of the hypothesis that the human menstrual cycle is in fact
the output of such a chaotic regime in a nonlinear dyna-
mical system, including a characterization of this regime
by measurements of various relevant parameters using
time series analysis.
The study of physiological systems using such techniques

has been widespread, but includes only a small number of
reports on endocrine physiology or the menstrual cycle.
Prank et al. [3] analyzed the variation of parathyroid hor-
mone levels in the blood over 24 hours (with a 2 minute
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sampling time) in three subjects, measuring the correlation
dimension, Lyapunov exponents, and correlation entropy
for these variations. Noguchi et al. [4] measured the blood
levels of growth hormone and prolactin over 24 hours in
six subjects (with a 30 minute sampling time), while Ilias
et al. [5] measured blood levels of growth hormone and
cortisol over 24 hours in ten subjects (again at 30 minute
intervals). The latter two studies report values of attractor
dimension estimates extracted from their data before and
after sleep deprivation. All of this work, however, used rela-
tively small numbers of time series data points, limited by
the great difficulty of obtaining large amounts of physiolo-
gical data for hormone concentrations in the blood and of
obtaining such data over an extensive period of time. In
this paper, we use a novel source of data to circumvent
these problems. No studies, to our knowledge, have used
nonlinear dynamical methods to study the time variation
of female reproductive system hormones, but Bai et al. [6]
did use such methods to examine the effects of ovarian
hormones and thyroid-related hormones on heart rate
variability during different parts of the menstrual cycle.
A number of mathematical models for the menstrual

cycle have been developed. Bogumil et al. [7,8] developed
an early but sophisticated model and simulation.
Although nonlinearities are naturally built into this
model, the simulation results required the addition of
stochastic elements in order to exhibit the empirically
observed variability in the menstrual cycle. This work
was performed prior to a significant portion of our pre-
sent physiological knowledge, however, and also prior to
our present appreciation for the possibilities of chaotic
dynamics in such systems. Increasingly accurate and
sophisticated models have been developed and imple-
mented more recently by Grigoliene and Svitra [9] and
by Clark et al. [10] These models have been augmented
by Reinecke and Deuflard [11] through the inclusion of
more detail in the GnRH pulse generation, but this
model has not been implemented yet. Although the
recent models that have been implemented are able to
reproduce measured hormone levels reasonably well over
a single cycle, the observed variability of the cycles has
not yet emerged naturally from these simulations. Other
models have focused more on particular mechanisms
such as the binding of hormones to receptors and cal-
cium ion pumping through membranes [12,13]. The
focus of attention has so far generally been on periodic
solutions and predictability of the modelled variables. We
hope to influence the course of future modelling investi-
gations with the presentation of the results herein.

Methods
Data for the menstrual cycles used in this work was
obtained from the database maintained by the Tremin
Research Program on Women’s Health [14], which

contains the results of an ongoing longitudinal study
begun in 1934 and includes data records for 3717
women. Since some of the subjects in the Tremin data-
base have data records for more limited age ranges, we
first isolated a subset of the subjects with longer records
(minimally including the 20-40 year age range) and ran-
domly selected those used in the present work from this
set. Some of these subjects (< 10) were rejected due to
documented health problems, missing data in the
records, and so on. The analyses were ultimately per-
formed on data for 20-40 years of age from 40 women,
resulting in a total of 7749 menstrual cycle data points.
In the Tremin research project, women prospectively
record which days they are menstruating (and which
not) on calendar cards, minimizing problems with inac-
curate memory recall. The calendar card data was initi-
ally converted into a string of menstrual cycle times
(defined as the time interval between the first day of
menstruation for two consecutive menstrual events last-
ing at least two days). We only retained those menstrual
cycles that were at least 16 days but no more than 54
days long; these were the 5th and 95th percentiles for
menstrual cycle length reported for the Tremin popula-
tion [2] (this protocol eliminated pregnancies, undocu-
mented health problems, and so on). Also, in keeping
with definitions used by the Tremin researchers, there
had to be at least a two-day gap between bleeding epi-
sodes to count as a new cycle. The data for all women
is then concatenated. A subset of the resulting men-
strual data sequence is shown in Figure 1A.
The data was also converted into a formal time series

by defining a sampling time τ such that tn = nτ. The nth

term of the time series f(t) is then defined as
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where Δti is the ith menstrual cycle time length in the
sequence. Equation (1) is essentially a device by which
to create a formal time series using the information con-
tent available in the menstrual cycle time data. The
rationale that underlies the validity of this device is
based on the fact that the onset of menstruation is a
discrete event that occurs when the body’s endocrine
system achieves some specific state, and that this state is
by hypothesis deterministically related to all preceding
and following states, since we are assuming that the
endocrine system is indeed a dynamical system. It then
follows that the time separating this state from the state
of the system at time tn is likewise a function f(t) of the
state of the system, and it is this function that we have
sampled the nth measurement of with our definition.
Although this is an unconventional sort of time series,
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being a time difference itself rather than some other
separately measured variable, the reasoning that under-
lies it is basically the same as that which underlies the
validity of the much-used phase space reconstruction
techniques [15]. For each individual woman, the sam-
pling time was set equal to the average cycle length to
eliminate stationarity. The final step in this construction

is the concatenation of the data together into the time
series used for analysis. A similar concatenation proce-
dure has also been used in previous physiological studies
[5]. An example of the resulting time series for a subset
of the data is shown in figure 1B.
We perform analyses using both this formal time ser-

ies that we constructed and also the raw inter-event
time data, Δti, treated as a series. The work of Castro
and Sauer [16] has shown that such inter-event time
data can be used to calculate correlation dimensions for
two different models of event generation from the dyna-
mical behavior of a system. The disadvantage of this
method is that we don’t know the details of the event
generation mechanism for our present experimental
case of a real physiological system. The disadvantages of
the formal time series are that it may artificially intro-
duce autocorrelation into the series (which, however,
can be corrected for) and the justification for it is not
truly rigorous. We argue, however, that concordance
between the results of the analysis using the Δti and the
results using the fn strongly suggests that both are valid.
A number of analyses were performed on this men-

strual cycle data. Our objective, in part, was to look for
evidence of chaos governing the dynamics of this system
by examining the data for signs of a strange attractor.
This was done using standard techniques, namely by
performing a state space reconstruction with time delay
embeddings [15] for the time series with time delay ΔT
= 7τ for all of the analyses reported here, and simply
using ΔT = τ for the cycle time sequence as outlined in
Castro and Sauer [16].
For the time series, the correlation dimension Dc of

the time series was calculated using the Grassberger-
Procaccia method [17]. Correlation sums C(R) were
calculated for R values from R = 2 to R = 125. The cor-
relation dimension

D
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can then be found from the slope of a log[C(R)] versus
log[R] plot over some appropriate scaling region, and
the Dc obtained by this method is known to be a good
approximation to the fractal dimension of a strange
attractor that has generated the time series data. This
procedure was repeated for embedding dimensions ran-
ging from d = 1 to d = 12. Since a strange attractor
only fills a limited volume of the available state space,
values of Dc that remain roughly constant as d increases
indicate the existence of a low dimensional attractor
governing the dynamics, and hence the likelihood of a
deterministic chaotic system. Since data points closer in
time are forced to be near each other by the time series
construction protocol, we did not use the first 70 data

Figure 1 Examples of data. Menstrual cycle length data during
20-40 year age interval, illustrating typical observed variability (A),
and time series constructed from the data using the protocol
defined by Equation (1) in text (B). Illustrative subsets of total data
record in both cases.
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points (nearest the point in question for that term of the
summation) in the correlation sums, employing a cor-
rection for this autocorrelation problem suggested by
Theiler [18]. For the inter-event timing data (i.e. men-
strual cycle lengths), a similar procedure is used, in this
case constructing the embedding vectors out of conse-
cutive values in the sequence. Correlation sums are
computed in the same way and values of Dc found from
the slopes of log[C(R)] versus Log[R] plots. Because the
amplitude of this sequence is smaller than that of the
time series, the scaling range of R is also considerably
smaller, but the scaling is quite good within that range.
Autocorrelation is minimal for this sequence, so no
Theiler correction is needed (this fact was verified
empirically).

Results
Results for both the time series and for the inter-event
time sequence are shown in figure 2. Also shown in
Figure 2 are results for the correlation dimension at
high values of d calculated using a different method,

namely the Takens estimator [19]. Using the time series
data for these computations, the Takens estimator var-
ied with R but remained stable for a range of R values
in the scaling region. The results in Figure 2 are those
in the middle of this range, for R ≈ 30, with a Theiler
correction of 70 as in the previous analysis. The scatter
in these results offers a sense of the uncertainty in the
correlation dimension measurement and of its reprodu-
cibility using differing methodologies. Average values
for the correlation dimension, using all of these results,
are plotted in Figure 2 as well. Considering the scatter
for the various computational methods, our best value
for the correlation dimension is Dc = 5.2 ± 0.7 in this
system. For comparison, the correlation dimension for
a set of Gaussian random numbers with a mean
and range similar to the menstrual cycle data is also
plotted in Figure 2. These computations result in Dc ≈ d
as expected, in contrast to the computations using the
real data.
To test for potential artifacts due to non-randomness

in the data from correlated noise (which can masquerade

Figure 2 Correlation dimension results. Variation of the correlation dimension with increasing embedding dimension, using all available data
and a variety of computational methods. Results for random pseudodata are also shown for comparison.
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as deterministic chaos by yielding low correlation dimen-
sions), we recalculated Dc using surrogate data sets
generated from the inter-event time sequence [20]. The
surrogate data was generated by randomizing the phases
of the Fourier transform of the real data and then inverse
transforming the resulting series. For the real data, the
Takens estimator for d = 10 and R = 5.5 is computed to
be ≈ 4.5, whereas for the surrogate data the Takens esti-
mator is computed to ≈ 8.8. This procedure was repeated
using two 2500 point subsets of the data, with similar
results. Hence, the surrogate data tests indicate that the
low correlation dimensions are the result of deterministic
chaotic dynamics, not artifacts.
We can also obtain dynamical information about the

system, in addition to the more geometric characteriza-
tion of its attractor that we have found, from the corre-
lation sums. These correlation sums can be employed
[21] to compute the correlation entropy,
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which approximates the Kolmogorov-Sinai entropy of a
chaotic system. From this relationship, we see that a plot
of -ln[C(d)] vs d for a fixed R should be a straight line
with slope K2ΔT. For the smallest experimentally accessi-
ble value of R and for large d (consistent with the theore-
tical validity of Equation 3 in the R®0 and d®∞ limits),
we observe behavior consistent with this predicted rela-
tionship, as shown in Figure 3. From the slope of the
resulting line, we find that K2 ≈ 0.008/τ for this system,
where τ is the sampling time used to construct the time
series. The fact that the K2 value computed in this way
has the correct sign and that the overall behavior of K2

with variations in d and R is consistent with our expecta-
tions for chaotic systems offers further evidence of non-
linear dynamics in the menstrual cycle.
Another important characterization of the dynamics

and topology of a system is its spectrum of Lyapunov
exponents. At least one positive exponent is a necessary
and sufficient condition for the system to be chaotic. The
data here do not have enough resolution to compute the
full spectrum of Lyapunov exponents, but we are able to
compute the largest exponent using a robust and
straightforward method suggested by Rosenstein et al.
[22] and by Kantz [23]. Basically, we find all of the points
in an embedding space of the time series that are close a
given point (i.e. within some specified distance ε at widely
separated times), and compute the separation Δ between
each of these points and the given point for a moderate
sequence of time steps (we used 55). The value of ln(Δ) is
found for each of these time steps and averaged over all
of the points at each time. This procedure is repeated for

a large number of sufficiently time-separated given initial
points until virtually all parts of the attractor have been
effectively sampled, and the resulting ln(Δ) values are
again averaged. When the average ln(Δ) values are
plotted versus time, a straight line should result for a
chaotic system, and the slope of this line is the value of
the largest Lyapunov exponent. Application of this
method to the time series constructed from the men-
strual cycle data yields the results shown in Figure 4.
This result is indeed observed to be approximately linear,
with a positive slope of 0.0045, yielding a largest Lyapu-
nov exponent of l ≈ 0.005/τ. The procedure was repeated
for several values of ε and d, with all results consistent
and reproducible. We interpret these results to be
another signature of chaotic dynamics in the menstrual
cycle. In addition, the values of K2 and l are entirely con-
sistent with Pesin’s Identity, further corroborating our
conclusions.

Discussion
One of the interesting features of the results reported here
is the comparatively low dimensionality of the system. The
phenomenological details of the human menstrual cycle
are extraordinarily complicated. Reinecke and Deuflhard
[11], for example, have devised a model for the human
menstrual cycle consisting of 43 differential equations
with 191 parameters, and yet an attractor with a fractal
dimension of ≈5.2 characterizing the dynamics of the
human menstrual cycle suggests that only 6 degrees of
freedom may be needed to describe these dynamics. This
will hopefully stimulate a rich array of novel approaches to
identify the agents that appear to govern the dynamics of
the menstrual cycle, and it offers the possibility that sim-
pler systems of equations may then be possible to analyze
these dynamics.
The second important implication for modeling results

is that the variability of the menstrual cycle, which has
been well documented for many years, is a natural fea-
ture of the dynamics itself. This variability is not merely
due to random fluctuations or external interference, and
thus any results generated by implementations of model
systems that do not exhibit this variability imply that
the models have not captured some important part of
the system’s dynamics. Variability in the menstrual cycle
should not be ignored by only considering average beha-
viors as is typical, nor imposed by means of ad hoc
stochastic additions as Bogumil et al. [7,8] did. Instead,
the variability is intrinsic to the behavior of the chaotic
system and valid models should reproduce comparable
variability as a natural outcome of their implementa-
tions. Moreover, such models can in principle be tested,
and parameters optimized, by comparing the various
nonlinear measures reported in the present paper
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(Dc, K2, and l) to the output of the models. We would
assert that any model producing only perfectly periodic
menstrual cycles is, at best, incomplete.
Beyond the details of particular models, the discovery

of chaotic dynamics in the menstrual cycle has implica-
tions for the more general paradigmatic approach that is
taken with regard to its behavior and the interpretation
thereof. For example, an increase in variability might be
construed as a natural consequence of the dynamics of
the system rather than as a pathological deviation from
normal behavior. Clinical goals associated with control
and predictability may not be appropriate for a system
that is known to be chaotic, and pharmacological inter-
ventions that impose regularity might need to be re-
examined in light of this new context. The prevailing
view of menopause as a senescent breakdown of the sys-
tem should also be reconsidered in light of the idea that
the menstrual cycle is the output of a nonlinear dynami-
cal system and therefore might have a variety of possible
regimes characterized by different values of relevant con-
trol parameters. Reinterpretations of this sort will be con-
sidered in more detail elsewhere, but far more analytical

work is needed before any definitive conclusions are
possible.
We are particularly interested in the issue of meno-

pause and the perimenopausal transition. We are analyz-
ing menstrual cycle data for the perimenopause in order
to characterize the chaotic dynamics in that regime and
compare it to the results of data from 20-40 year old
women presented in this report. Significantly different
values of the relevant measures (such as Dc, K2, and l)
during the perimenopause would indicate that the dyna-
mical system (i.e. reproductive endocrine physiology)
had undergone a phase transition to some new attractor,
a conclusion that seems more consistent with existing
evidence than the usual notions of senescence, break-
down, and pathology. However, it is likely that refine-
ments in the analysis to improve the precision of these
measurements are needed in order to enact this agenda.

Conclusions
The major conclusion of the present paper is that the
human menstrual cycle is in fact the output of a non-
linear dynamical system in a chaotic regime, even in the

Figure 3 Correlation entropy results. Logarithmic variation of the correlation sums with embedding dimension for a fixed R in the low R limit,
illustrating the expected behavior for a chaotic system. Slope of the resulting straight line yields the correlation entropy.
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most comparatively regular phase of its development
during the 20-40 year age range. A quantitative charac-
terization of this trajectory is provided by its correlation
dimension Dc = 5.2 ± 0.7, correlation entropy K2 ≈ 0.008/
τ, and largest positive Lyapunov exponent l ≈ 0.005/τ
(where τ represents the sampling time of the data). We
believe that the evidence presented here for the chaotic
nature of the menstrual cycle is persuasive and that our
quantitative measures of its dynamics are reliable.
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