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Abstract
Background: Sequel to the work on the quantization of nonconservative systems using fractional calculus and 
quantization of a system with Brownian motion, which aims to consider the dissipation effects in quantum-mechanical 
description of microscale systems.

Results: The canonical quantization of a system represented classically by one-dimensional Fick's law, and the diffusion 
equation is carried out according to the Dirac method. A suitable Lagrangian, and Hamiltonian, describing the diffusive 
system, are constructed and the Hamiltonian is transformed to Schrodinger's equation which is solved. An application 
regarding implementation of the developed mathematical method to the analysis of diffusion, osmosis, which is a 
biological application of the diffusion process, is carried out. Schrödinger's equation is solved.

Conclusions: The plot of the probability function represents clearly the dissipative and drift forces and hence the 
osmosis, which agrees totally with the macro-scale view, or the classical-version osmosis.

Introduction
In this paper we aim to consider the dissipation effects,
appeared in the will-known diffusion process, quantum-
mechanically depending on the procedure of the quanti-
zation of nonconservative systems using fractional calcu-
lus [1-4], which was also applied on the related
phenomenon, the Brownian motion [5].

Most of the natural laws of physics, such as Maxwell's
equations, Newton's laws of motion, and Schrödinger
equation, are stated, or can be, in terms of partial def-
firential equations (PDEs), that is, these laws describe
physical phenomena by relating space and time deriva-
tives. Diffusion equation, or heat flow, is one of the most
important PDEs in physical sciences. The basic process in
the diffusion phenomenon is the flow of the fluid from a
region of higher density to one of lower density [6].

The tendency of a statistical ensemble to achieve ther-
modynamic equilibrium with a uniform distribution of
states for its constituent subsystems does not have to be
monotonic in time. In general, equilibration takes place
in stages and is characterized by several stochastization
times with vastly different orders of magnitude. Thermo-
dynamic equilibrium has no absolute meaning and

depends on the time scale over which a given process is
analyzed.

In a diffusion process or chemical reaction, Fick's law
provides a linear relationship between the flux of mole-
cules and the chemical potential difference. Likewise, a
direct proportionality exists between the heat flux and
the temperature difference in a thermally conducting
slab, as expressed by Fourier's law. Diffusion of gases
between air in the lungs and blood proceeds in the direc-
tion from high to low concentration, and the rate of diffu-
sion is greatest when the difference in concentration is
greatest. Diffusion obeys Fick's law, but the actual rate of
exchange is greatly affected by hemoglobin in the blood.

Diffusion equation
Diffusion is macroscopically associated with a gradient of
concentration. In contrast to the mass flow of liquids, dif-
fusion involves random spontaneous movements of indi-
vidual molecules. The diffusion flux is expressed in
number of particles traversing a unit area per unit time
and the concentration in number of particles per unit vol-
ume. This process can be quantified by a constant known
as the diffusion coefficient, D, of the material, given in
general by the Stokes-Einstein equation:
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where kB is the Boltzmann constant, T is the absolute
temperature in K, and f is a frictional coefficient. The dif-
fusion coefficient, D, is defined as the net flow of particles
per unit time across an imaginary plane of unit area lying
at right angles to the concentration gradient, that gradi-
ent also having unit strength.

Hydrodynamic properties of macromolecules like dif-
fusion, viscosity and sedimentation are affected by the
frictional forces between molecules of the diffused mate-
rial and those of the ambient material. Since this fric-
tional force is in opposition to motion we can include this
in the equation of motion as [7]:

where f is the frictional coefficient, (dv/dt) is the accel-
eration and m is the mass of the molecule. In the case of
spherical particles, the translational frictional force f is
proportional to the fluid viscosity,η, and radius r of the
particle. Thus the coefficient of friction for spherical par-
ticles, known as Stokes law, is

The frictional coefficient f comes into effect when a
molecule moves through a medium. The movement of
the molecule could be either diffusion or sedimentation
and the driving force, F, can be the concentration gradi-
ent, the force of gravity or the centrifugal force. Accord-
ing to Fick's law, the rate of diffusion across a boundary
(dn/dt: the number of molecules which pass through a
cross section A in unit time) for a single solute compo-
nent diffusing in a system at constant temperature and
pressure is given by [7]:

where  is the concentration gradient. A concentra-

tion gradient implies that the concentration of the mole-
cules (i.e. the solute) varies with distance r in one
dimension.

1-The continuity equation. The equation of continuity
assures us that flow is equal at any point, whatever the
degree of tapering. If the cross-sections and correspond-
ing velocities at two points are, respectively, A1, A2, v1,
and v2, from the equation of continuity, we have:

This is a simplified version of the one-dimensional con-
tinuity equation whose differential form is

2-Fick's law. Fick's law states that the rate of diffusion
per unit area in a direction perpendicular to the area is
proportional to the gradient of concentration of solute in
that direction. The concentration is the mass of solute per
unit volume, and the gradient of concentration is the
change in concentration per unit distance. If the concen-
tration changes from C1 to a lower value of C2 over a short
length (d), then the mass (m) of the solute diffusing down
the pipe in time (t) is

This is a simplified version of Fick's law whose differen-
tial form is

3- The diffusion equation. In cells without sources, the
diffusion equation is written as:

The concentration gradient across the boundary is
given as [6]:

where C0 is the total solute concentration difference
across the boundary.

Quantization of diffusion process
Diffusion can be considered as movement of molecules
from a higher concentration to a lower concentration. In
reference to Eq. (2), the forces acting on the diffused par-
ticle are the driving and the friction forces:

In order to construct the Hamiltonian of the Diffused
particle we should obtain the potential corresponding to
this force. By using the formula [8] (see the appendix):
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which enables us to have the potential of a nonconser-
vative force, the potential corresponding to the velocity
dependent term which represents the frictional force dis-
sipation effect is

Where (see the appendix)

The driving force is the random force  may be rep-
resented as a sequence of impulses between the particle
assembly; in the same way we think of pressure that it is
just the force per unit area due to a tremendous number
of impacts of individual molecules. Hence, we can replace
the potential that produces the force of one impulse or
one collision V'(x) by - δ(x'-x) and the entire potential,
V(x), will be written as

Using the identities [9]

and

which leads to

Thus, the force F(x') is obtained directly

At the same time,  could be written as

this random force may expressed spatially, instead of its
time dependence, in the same way as

By making use of Eq.(19)

Thus, we obtain a definition of the random force, that
agrees with our assumption and with the fact that �F(x)� =
0 of Eq.(2).

The Lagrangian of the Diffused particle is

where

The generalized Euler-Lagrange equation for this prob-
lem, reads as [10,11]:

That leads to

which is the classical equation of motion of the diffused
particle, Eq.(2).

The canonical momenta are [10,11]:
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Making use of the Hamiltonian definition [1,2]

the Hamiltonian of the Diffused particles is

Here, p0 and p1/2 are the canonical conjugate momenta
to q0 and q1/2 respectively.

Schrödinger equation reads [1,2]

Making use of Eqs. (32 and 33), Schrödinger equation
reads as:

Using the method of separation of variables, the rela-
tions in the appendix, and defining Ψ as

we find that the time-dependent part is

and has the solution

The other part is:

where q0 = x and q1/2 = y.
Now, let x = uy. Substituting into Eq. (36), we have

As an approximation, we assume constant values of u.
This leads to

For y ≠ y' Eq.(39) is reduced to

which has the solution[12,13]

Hn being Hermite polynomials.
The y = y' of Eq.(39) will be ignored since the impulse

potential effects will be considered in the part of Eq. (37)
which will be written as

where we assumed y is a constant. Using the identity [9]
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where H(u - u') Heaviside step function.
Thus

In terms of qs(i), Ψ is expressed as

Application: osmosis
Osmosis is a physical phenomenon that has been exten-
sively studied by scientists in various disciplines of sci-
ence and engineering. Early researchers studied the
mechanism of osmosis through natural materials, and
from the 1960s, special attention has been given to osmo-
sis through synthetic materials. Following the progress in
membrane science in the last few decades, especially for
reverse osmosis applications, the interests in engineered
applications of osmosis has been spurred. Osmosis, or as
it is currently referred to as forward osmosis, has new
applications in separation processes for wastewater treat-
ment, food processing, and seawater/brackish water
desalination. Other unique areas of forward osmosis
research include pressure-retarded osmosis for genera-
tion of electricity from saline and fresh water and
implantable osmotic pumps for controlled drug release.
This paper provides the state-of-the-art of the physical
principles and applications of forward osmosis as well as
their strengths and limitations.

Osmosis is usually defined as the transport of molecules
in a fluid through a semipermeable membrane due to an
imbalance in its concentration on either side of the mem-
brane [6]. Osmosis may be by diffusion, but it may also be
a bulk flow through pores in a membrane. If a plant cell is
put into a concentrated solution of sugar, for example,
Fig. 1, the pressure on the right is then, in either case,
water moves from a region of high concentration to a
region of low concentration greater than the pressure on
the left by an amount hρg, where ρ is the density of the
liquid on the right and is called the relative osmotic pres-
sure. The general formula for the osmotic pressure P of a
solution containing n moles of solute per volume V of sol-
vent is [6]

The net osmotic pressure exerted on a semipermeable
membrane separating the two compartments is thus the
difference between the osmotic pressures of both com-
partments.

Making use of the proportionality of pressure and force,
Eq. (11) becomes

Where Fp is the force per unit area; thus Eq. (22)
becomes

Thus, we obtain a definition of the new random force,
but with a complete disagreement with our assumption
with the fact that �F(x)� = 0 of Eq.(2). This disagreement
appears from the fact that pressure exerted a net drift
force Fp on the particles in the direction of osmosis (Fig.
1).

At the same time Eq. (47) looks like

Discussion
Fraction calculus is very helpful expressing the dissipa-
tion, as well as in quantizing nonconservative systems
associated with many important physical problems:
either where the ordinary quantum-mechanical treat-
ment leads to an incomplete description, such as the
energy loss by charged particles when passing through
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Figure 1 Osmosis [6].
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matter; or where it leads to complex nonlinear equations,
such as Brownian motion, and diffusion.

By using fractional calculus in physical problems it is
possible to create a whole mechanical description of non-
conservative systems, including Lagrangian and Hamilto-
nian mechanics, canonical transformations, Hamilton-
Jacobi theory, and quantum mechanics. In this paper, an
important physical nonconservative system, which is the
diffusion process is treated quantum-mechanically, for
the first time using fractional-calculus.

Well-known biological process correlated diffusion is
studied. Fig. 2 represents the fun probability function,
|Ψ|2 of Eq. (51), connected to of the "osmosisized" particle
including the drift, and frictional forces; the osmosis pro-
cess is manifested very clearly, where the confinement of
these particles to one region of space gradually leads to a
situation in which the particles uniformly fills all the
available space in the high concentration, where the new
Heaviside step function, Hp, is modified due to drift force
to show non-step behavior; which agrees totally with the
macro-scale view, or the classical-version osmosis.

Conclusion
Diffusion and the diffusion equation are central topics in
both Physics and Mathematics, and their ranges of appli-
cability span from astrophysical dynamics to the diffusion
of particles governed by Schrödinger's equation.

The quantization of a system with diffusion process has
been carried out according to the theory proposed
recently [1,2]. A potential, and a Hamiltonian, corre-
sponding to the random force, and dissipative force, were
constructed. The relevant Schrödinger's equation has
then been set and solved. The classical equation of
motion, connected to diffused particle, could be obtained
easily from the fractional Lagrangian. The random and

frictional forces were plotted; the diffusion process mani-
fested very clearly. The next step could be to study prob-
lems such as the correlation functions, transport
equation, chemical potential, entropy, etc., on a quan-
tum-mechanical basis.

An application of the developed mathematical method
to the analysis of diffusion in a biological medium, osmo-
sis, is carried out. Schrödinger's equation is solved. The
plot of the probability function represents clearly the dis-
sipative and drift forces and hence the osmosis, which
shows the same macro-scale view of the osmosis.

Appendix: Fractional calculus
The fractional integral of a function f(t) is defined as
[14,15]

where Jα represents the fractional integral operator of
order α, and R+ represents the set of positive real num-
bers.

If we introduce the positive integer m such that m -1 <α
≤ m the fractional derivative of order α > 0 may be
defined as

Da being the fractional deferential operator of order a
Equation (2) may be rewritten using Eq. (1) as follows:

Here, we formulate the problem in terms of the left
fractional derivative the left Riemann-Liouville fractional
derivatives, which are defined in Eqs. (A.1, A.2). Most of
the left fractional operations also hold for the right ones.
For the left operations f(t) must vanish for t <a while f(t) =
0 for t >b for the right operation. Thus, the left operations
are causal. Conversely, the right operations are anti-
causal [16]. From the physical point of view, when we dif-
ferentiate with respect to time, the right differentiation
represents an operation performed on the future state of
the process f(t) [17].

Fractional integral and differential operators have the
following properties [14,15]:

For I, the identity operator:

J f t t f d
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D J In n = ; (A.4)
Figure 2 Probability function. Probability function, |Ψ|2 of the dif-
fused particle including the random, and frictional forces; the osmosis 
process manifested very clearly.
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but the inverse application of the two operators is not
necessarily true.

For n > 0, Jn and Dn are linear operators, i.e.,

For a constant c, Jn and Dn are homogeneous operators,
i.e.,

For α, β > 0, Jn obeys the additive index law, but not nec-
essarily Dn, i.e.,

Of special importance are the fractional integrals and
fractional derivatives of the function (t - a)β, which are
given by

For α = 1/2 this equation is called semi-derivative; for α
= - 1/2 it is called semi-integral.
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