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Abstract
Since the discovery of small-world and scale-free networks the study of complex systems from a
network perspective has taken an enormous flight. In recent years many important properties of
complex networks have been delineated. In particular, significant progress has been made in
understanding the relationship between the structural properties of networks and the nature of
dynamics taking place on these networks. For instance, the 'synchronizability' of complex networks
of coupled oscillators can be determined by graph spectral analysis. These developments in the
theory of complex networks have inspired new applications in the field of neuroscience. Graph
analysis has been used in the study of models of neural networks, anatomical connectivity, and
functional connectivity based upon fMRI, EEG and MEG. These studies suggest that the human brain
can be modelled as a complex network, and may have a small-world structure both at the level of
anatomical as well as functional connectivity. This small-world structure is hypothesized to reflect
an optimal situation associated with rapid synchronization and information transfer, minimal wiring
costs, as well as a balance between local processing and global integration. The topological
structure of functional networks is probably restrained by genetic and anatomical factors, but can
be modified during tasks. There is also increasing evidence that various types of brain disease such
as Alzheimer's disease, schizophrenia, brain tumours and epilepsy may be associated with
deviations of the functional network topology from the optimal small-world pattern.

1. Background
The human brain is considered to be the most complex
object in the universe. Attempts to understand its intricate
wiring patterns and the way these give rise to normal and
disturbed brain function is one of the most challenging
areas in modern science[1]. In particular, the relationship
between neurophysiological processes on the one hand,
and consciousness and higher brain functions such as
attention, perception, memory, language and problem
solving on the other hand, remains an enigma to this day.
In the last decades of the 20th century significant progress
has been made in neuroscience with an essentially reduc-

tionistic, molecular biologic research programme [2]. The
Nobel prize in physiology or medicine awarded to Eric
Kandel in 2000 for discovering the molecular mecha-
nisms of memory in the snale aplysia signifies the impor-
tance of this work. However, despite the impressive
increase of knowledge in neuroscience in terms of molec-
ular and genetic mechanisms, progress in true under-
standing has been disappointing, and few theories are
available that attempt to explain higher level brain proc-
esses.
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For this reason there has been increased interest to search
for other approaches to study brain processes and their
relation to consciousness and higher brain functions [3].
One strategy has been to conceive the brain as a complex
dynamical system and to search for new approaches in
other fields of science that are also devoted to the study of
complex systems. In recent years considerable progress
has been made in the study of general complex systems,
consisting of large numbers of weakly interacting ele-
ments. Three research areas in physics and mathematics
have proven to be particularly valuable in the study of
complex systems: (i) nonlinear dynamics and related
areas such as synergetics; (ii) statistical physics which
deals with universal phenomena at phase transitions and
scaling behaviour, and (iii) the modern theory of net-
works, which is derived from graph theory [4].

Nonlinear dynamics has been applied to the study of the
brain since 1985, and has become a very active research
field in itself [5,6]. Application of nonlinear dynamics to
neuroscience has lead to the introduction of new concepts
such as attractors, control parameters and bifurcations as
well as to the development of a whole range of new ana-
lytical tools to extract nonlinear properties from time
series of brain activity. This has resulted for instance in
new ways to model epileptic seizures as well as methods
to detect and perhaps even predict the occurrence of sei-
zures [7-9]. Recently, the focus in studies of nonlinear
brain dynamics has shifted from trying to detect chaotic
dynamics to studying nonlinear interactions between
brain areas [10,11]. The study of critical phenomena and
scaling behaviour in brain dynamics has also been very
fruitful. Several studies have shown that time series of
brain activity demonstrate scaling with characteristic
exponents, suggesting critical dynamics near a phase tran-
sition [12-15].

The modern theory of networks, which originated with
the discovery of small-world networks and scale-free net-
works at the close of the last millennium is the most
recently developed approach to complex systems [16,17].
The study of complex networks has attracted a large
amount of attention in the last few years, and has resulted
in applications in such various fields as the study of met-
abolic systems, airport networks and the brain [18-22].

The aim of the present review is to discuss recent applica-
tions of network theory to neuroscience. After a brief his-
torical introduction we summarize the basic properties
and types of networks, and some important results on the
relation between network properties and processes on
these networks, in particular synchronization phenom-
ena. Subsequently we will discuss applications to neuro-
science under three headings: (i) modelling of neural
dynamics on complex networks; (ii) graph theoretical

analysis of neuroanatomical networks; (iii) applications
of graph analysis to studies of functional connectivity
with functional magnetic resonance imaging (fMRI), elec-
troencephalography (EEG) and magnetoencephalogra-
phy (MEG).

2. Historical overview
The modern theory of networks has its roots in mathemat-
ics as well as in sociology. In 1736 the famous mathema-
tician Leonard Euler (1707–1783) solved the problem of
'the bridges of Konigsberg'. This problem involved the
question whether it is possible to make a walk crossing
exactly one time each of the seven bridges connecting the
two islands in the river Pregel and its shores. Euler proved
that this is not possible by representing the problem as an
abstract network: a "graph". This is often considered the
first proof in graph theory. Since then graph theory has
become an important field within mathematics, and the
only available tool to handle network properties theoreti-
cally. An important step forward occurred when random
graphs were discovered [23,24]. In random graphs con-
nections between the network nodes are present with a
likelihood p. Many important theorems have been proven
for random graphs. In particular it has been shown that
properties of the graphs often undergo a sudden transi-
tion ('phase transition') as a function of increasing p.
However, despite the success of classical graph theory, it
was not a very good or useful theory for real networks
encountered in nature. One empirically observed phe-
nomenon that could not be explained by classical theory
was the fact the 'distances' in sparsely and mainly locally
connected networks were often much smaller than
expected.

This phenomenon was probably first observed by the
Hungarian writer Frigyes Karinthy in a short story called
'Chains' [25]. In this story he speculates that in the mod-
ern world the 'distance' between any two persons is
unlikely to be more than five persons. As it turned out,
this was a remarkable foresight of an important fact about
certain classes of networks. The first person to study this
phenomenon more scientifically was Stanley Milgram
(1933–1984). He was interested in quantifying distances
in social networks. In one experiment he sent letters to
randomly chosen subjects in the USA. They were
informed that the letter should go to a certain person in
Boston. However, the subjects were only allowed to send
the letter to another person they knew well, and who
might possibly be a little closer to the target in Boston. As
it turned out, many letters did reach the target person, and
on average each letter was sent only 5.5 times. This exper-
iment could count as the first empirical proof of the
'small-world' phenomenon, also referred to as 'six degrees
of separation' [26]. The 'small-world' phenomenon was
later confirmed in other experiments (for instance: the let-
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ter experiment was repeated with e-mail) but for a long
time no satisfactory explanation was available.

This situation changed suddenly in 1998 with the publi-
cation of a paper in Nature by Duncan Watts and Steven
Strogatz [16]. In this paper the authors proposed a very
simple model of a one-dimensional network on a ring.
Initially each node ('vertex') in the network is only con-
nected to its k nearest neighbours (k/2 on each side). K is
called the degree of the network. Next, with a likelihood
p, connections ('edges') are chosen at random and con-
nected to another vertex, also chosen randomly. With
increasing p more and more edges become randomly re-
connected and finally for p = 1 all connections are ran-
dom. Thus, this simple model allows to investigate the
whole range from regular to random networks, including
an intermediate range. The intermediate range proved to
be crucial to the solution of the problem.

To show this, the authors introduced two measures: the
clustering coefficient C, which is the likelihood that
neighbours of a vertex will also be connected, and the
path length L which is the average of the shortest distance
between pairs of vertices counted in number of edges.
Watts and Strogatz showed that regular networks have a
high C but also a very high L. In contrast, random net-
works have a low C and a low L. So, neither regular nor
random networks explain the small-world phenomenon.
However, when p is only slightly higher than 0 (few edges
randomly rewired) the path length L drops sharply, while
the clustering coefficient hardly changes. Thus networks
with a small fraction of randomly rewired connections
combine both high clustering and a small path length,
and this is exactly the small-world phenomenon to be
explained. These networks were called 'small-world' net-
works by the authors, who showed that such networks
could be found in the nervous system of C. elegans, a
social network of actors and the network of power plants
in the United States. Also, they showed that a small-world
architecture might facilitate the spread of infection or
information in networks.

A second major discovery was made a year later by Bara-
basi and Albert [17]. They proposed a model for the
growth of a network where the likelihood that a newly
added edge will connect to a vertex depends upon the
degree of this vertex. Thus, vertices that have a high degree
(large number of edges) are more likely to get even more
edges. This is the network equivalent of 'the rich getting
richer'. Networks generated in this way are characterised
by a degree distribution which can be described by a
power law: P(k) = k-1/a. In the case of the Barabasi Albert
model the exponent is exactly 3. Networks with a power
law degree distribution are called scale-free. It has been
shown that many real networks in nature such as for

instance the Internet, the World Wide Web, collaboration
networks of scientists and networks of airports are likely
to be scale-free [27,28]. Scale-free networks have many
interesting properties such as an extremely short path
length, which will be discussed in the section below.

The discovery of small-world networks in 1998 and of
scale-free networks in 1999 was noted by scientists in
many different fields, and set off a large body of theoreti-
cal and experimental research that is growing to this day.
In retrospect these discoveries can be considered to be the
starting point of the modern theory of networks. The field
is so new that there are only few textbooks yet [28,29].
Fortunately there are several excellent reviews that give an
overview of the current state of network theory [27,30-
33]. A collection of key papers can be found in Newman
et al. [34].

3. Basics of modern network theory
3.1 Definition of graphs and graph measures
A graph is an abstract representation of a network. It con-
sists of a set of vertices (or nodes) and a set of edges (or
connections) (Fig. 1). The presence of an edge between
two vertices indicates the presence of some kind of inter-
action or connection between the vertices (the interpreta-
tion depends upon what is being modelled with the
graph). The adjacency matrix A contains the information
about the connectivity structure of the graph. When an
edge exists between two vertices i and j the corresponding
entry of the adjacency matrix is: Ai,j = 1; otherwise Ai,j = 0.
The number of edges connecting to ('incident on') a vertex
is called the degree k of this vertex. The likelihood P(k)
that a randomly chosen vertex will have degree k is given
by the degree distribution: it is a plot of P(k) as a function
of k. The degree distribution can have different forms:
Gaussian, binomial, Poisson, exponential or power law.
The degree distribution is an important determinant of
network properties.

With respect to the edges several further distinctions can
be made. Graphs can be undirected, when information
can flow in both directions along edges connecting verti-
ces, or directed, when information can only flow in one
direction. In directed graphs each vertex may have differ-
ent numbers of ingoing and outgoing edges; correspond-
ingly there are separate in degree and out degree
distributions for such graphs. Graphs which contain verti-
ces connected by more than one edge are called multi-
graphs. Graphs in which edges either exist or do not exist,
and in which all edges have the same significance are
called unweighted graphs. When weights are assigned to
each of the edges the corresponding graph is called a
weighted graph (right panel in Fig. 1). Weights can be
used to indicate the strength or effectiveness of connec-
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tions, or the distance between vertices; negative weights
can also be used.

Two measures are frequently used to characterize the local
and global structure of unweighted graphs [16,27,33].
These are the clustering coefficient C and the characteristic
path length L. The clustering coefficient Ci of a vertex i
with degree ki is usually defined as the ratio of the number
of existing edges (ei) between neighbours of i, and the
maximum possible number of edges between neighbours
if i. A vertex is called a neighbour of i when it is connected
to it by an edge. The formula for Ci is:

A slightly different definition can be found in Newman
(Newman, 2003). The clustering coefficient C ranges
between 0 and 1. Usually Ci is averaged over all vertices to
obtain a mean C of the graph.

The clustering coefficient is an index of local structure,
and has been interpreted as a measure of resilience to ran-

dom error (if vertex i is lost, its neighbours remain still
connected).

Another important measure is the characteristic path
length. In the case of an unweighted graph the path length
or distance di,j between two vertices i and j is the minimal
number of edges that have to be travelled to go from i to
j. This is also called the geodesic path between i and j. The
characteristic path length L of a graph is the mean of the
path lengths between all possible pairs of vertices:

The characteristic path length is a global characteristic; it
indicates how well integrated a graph is, and how easy it
is to transport information or other entities in the net-
work. A measure related to the path length is the diameter
of a graph: this is the length (in number of edges) of the
longest geodesic in a graph.

The degree distribution, clustering coefficient and path
length are the core measures of graphs. On the basis of
these measures four different types of graphs can be dis-
tinguished: (i) ordered or lattice like; (ii) small-world;
(iii) random and (iv) scale-free (Fig. 2, 3). A further sub-
division is described in Amaral et al. [36]. In an ordered
network, each vertex is connected to its k nearest neigh-
bours. What 'nearest' means depends upon the dimension
in which the network is modelled. In most cases, one or
two dimensional networks are considered. Ordered or lat-
tice like networks have a high C and a large L. For the one-
dimensional model of Watts and Strogatz the theoretical
values of C and L are 3/4 and N/2K. A small world net-
work can be thought of as an ordered network where a
small fraction of the edges (given by the rewiring proba-
bility p) has been randomly rewired. Such a network has
a C close to that of an ordered network, but a very small
path length close to that of a random network. However,
analytical solutions of C and L as a function of p are not
known [27]. In a random network, all edges are randomly
assigned to vertex pairs (or: edges exist with a certain like-
lihood). In a random network, C is very small (K/N) and
L is very short: ln(N)/ln(K). Finally, a scale-free network is
a network with a power law degree distribution. Such a
network could be generated by a growth process character-
ized by preferential attachment (Barabasi and Albert,
1999). However, other growth models for scale-free net-
works have been proposed [27,33]. We should stress that
neither lattice like, small-world or random networks are
scale-free. Scale-free networks can have very small path
lengths of the order of lnln(N), but the clustering coeffi-
cient may also be smaller than that of small-world net-
works [36].
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Representation of a network as a graphFigure 1
Representation of a network as a graph. In the case of an 
unweighted graph (left panel) black dots represent the nodes 
or vertices, and the lines connecting the dots the connec-
tions or edges. The shortest path between vertices A and B 
consists of three edges, indicted by the striped lines. The 
clustering coefficient of a vertex is the likelihood that its 
neighbours are connected. For vertex C, with neighbours B 
and D, the clustering coefficient is 1. When weights are 
assigned to the edges, the graph is weighted (right panel). 
Here the weights of the edges are indicated by the thickness 
of the lines.
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In addition to clustering coefficients, pathlengths and
degree distributions other measures have been introduced
to characterize properties of interest. Milo et al. intro-
duced the concept of network motifs [37,38]. A motif is a
simple subgraph consisting of a small number of vertices
connected in a specific way. Triangles are a simple type of
motif. To some extent, the clustering coefficient is an
index of a specific type of motif, namely the triangle. Alter-
natively, one could view motif analysis as a kind of gener-
alization of the clustering coefficient. Another measure is
the degree correlation. This is an index of whether the
degree of a vertex is influenced by the degree of another
vertex to which it connects. The average degree knn of the
neighbours of a node with degree k is given by:

Graphs with a positive degree correlation are called assor-
tative; in the case of a negative degree correlation a graph
is called disassortative. Degree correlations can be quanti-
fied by computing the Pearson correlation coefficient of
the degrees of pairs of vertices connected by an edge. Inter-
estingly, most social networks tend to be assortative,
while most technological and biological networks tend to
be disassortative (table 3.1 in [27].). An index of the rela-
tive importance of a vertex or edge is the 'betweenness'.
This is the number of shortest paths that run through an
edge or vertex. The beweenness of a node bi is defined as:

This is the ratio of all shortest paths between j and k that
run through i (nj,k(i)), divided by all shortests paths
between j and k (nj,k). This measure also reflects the con-
sequences of the loss of a particular edge or vertex.
Another recently described measure is the transversal time
for random walks on small-world networks [39]. Charac-
terization of overlapping communities in complex net-
works has recently been described by Palla et al. [40].

Most graph measures have only been defined for the sim-
plest case of unweighted graphs. However in many cases
weighted graphs may represent more accurate models of
real networks. Several authors have discussed the analysis
of weighted graphs [41-47]. To characterize such networks
one could convert them to unweighted graphs, for
instance by setting all edges with a weight above a certain
threshold to 1, and the others to 0. Although this
approach works and has been used in EEG and MEG stud-
ies, it has several disadvantages: (i) much of the informa-
tion available in the weights is not used; (ii) when the
threshold is too high some vertices may become discon-

nected from the graph which poses problem with the
computation of C and L; (iii) the choice of the threshold
remains arbitrary. Latora and Marchiori have proposed a
framework to address some of these problems [41,42,48].
They consider weighted networks and define the effi-
ciency of the path between two vertices as the inverse of
the shortest distance between the vertices (note that in
weighted graphs the shortest path is not necessarily the
path with the smallest number of edges). In the case
where a path does not exist, the length is considered to be
infinite, and the efficiency is zero. The average over all pair
wise efficiencies is the Global efficiency Eglob of the graph:

The Local efficiency is the mean of the efficiencies of all
subgraphs Gi of neighbours of each of the vertices of the
graph. The average local efficiency Eloc is given by:

The approach based upon efficiencies is attractive since it
takes into account the full information contained in the
graph weights, and provides an elegant solution to handle
disconnected vertices. Efficiency has been used to show
that scale-free networks are very resistant to random
errors, but quite sensitive to targeted attacks [49]. By tak-
ing the harmonic mean of the inverse of the efficiencies a
weighted path length can be defined, which is a bit closer
to the original path length (formula 3.2 in [27].). Slightly
modified the formula is:

Apart from the Local efficiency, two other definitions of
the clustering coefficient have been proposed for weighted
networks. In one definition only the weights of the edges
connecting the neighbours of a vertex are taken into
account, while the edges connecting this vertex to its
neighbours are all given a weight of 1 [46]. It is also pos-
sible to define a weighted clustering coefficient, that takes
into account both the weights between the reference ver-
tex and its neighbours, as well as the weights of the edges
between the neighbours [47]. In the last study an
approach to the analysis of motifs in weighted graphs was
also proposed.

Finally we briefly mention a measure of the 'synchroniza-
bility' of a graph. This measure is based upon a so-called
linear stability analysis. A detailed description can be
found in [33]. Briefly, the spectrum of eigenvalues from
the graph laplacian L is determined. This matrix L is the

k k k P k knn
k

( ) ( ).’ ’

’

= ∑ (4)

b
n i

ni
j k

j kj k N j k

=
∈ ≠
∑ ,

,, ,

( )
. (5)

E
N N dglob

i ji j N i j

=
− ∈ ≠

∑1
1

1
( )

.
,, ,

(6)

E
N

E Gloc i
i N

=
∈
∑1

( ). (7)

L
N N di ji j N i j

−

∈ ≠
=

− ∑1 1
1

1
( )

.
,, ,

(8)
Page 5 of 19
(page number not for citation purposes)



Nonlinear Biomedical Physics 2007, 1:3 http://www.nonlinearbiomedphys.com/content/1/1/3
difference between the diagonal matrix of node degrees
and the adjacency matrix A. The eigenvalues are ordered
from the largest to the smallest, where λ1 = 0. The ratio R
= λN/λ2 of the largest and one but smallest eigenvalue is a
measure of the synchronizability of the graph. This
approach has been used for unweighted as well as
weighted networks, and will be referred to in the studies
discussed in the following section.

3.2 Dynamic processes on graphs
One of the most interesting and active research areas in
modern network theory is the study of structure function
relationships, in particular the relation between topologi-
cal network characteristics and synchronization dynamics
on these networks [50]. The importance of the small-
world structure for the spread of infectious disease was
already addressed in the original Watss and Strogatz paper
[16]. Barahona and Pecora used linear stability analysis
and the master stability function (MSF) to study the syn-
chronizability of networks with complex topology [51].
They showed that networks with a small-world topology
may synchronize more easily than deterministic or fully

random graphs, although the presence of small-world
properties did not guarantee that the network will be syn-
chronizable. Hong et al. studied the synchronization
dynamics of a small-world network of coupled oscillators
as a function of rewiring probability p [52]. They found
that phase and frequency synchronization arise even for
small values of p. The phase transition was of the mean
field type, like in the Kuramoto model. For values of p >
0.5 the small-world model synchronized as rapidly as a
fully random network.

A surprising phenomenon, later referred to as 'the paradox
of heterogeneity' was discovered by Nishikawa et al. [53].
Using linear stability analysis and the ratio λN/λ2 (largest
divided by second smallest eigenvalue of the graph Lapla-
cian matrix) as an index of synchronizability, they showed
that (unweighted, undirected) networks with a more
homogenous degree distribution synchronize more easily
than networks with a more heterogeneous degree distri-
bution, even when the latter network type has a shorter
average path length. This observation implied that the
previous idea that synchronizability was directly related to
path length had to be rejected. The authors explain the
paradoxical effect of heterogeneous degree distributions
on synchronizability by the 'overload' of the few highly
connected nodes in the network.

Another factor with a somewhat unexpected influence on
network synchronization is the existence of delays
between the coupled dynamic units. Atay and Jost showed
in a model of coupled logistic maps that networks with
scale-free or random topology could still synchronize
despite the delays, whereas lattice like and small-world
networks did not synchronize well [54]. However, and
this was somewhat unexpected, in some cases where the
un delayed network did not synchronize, synchronization
did occur when delays were introduced. We should add
however that it is not clear to what extent these results
obtained with discrete maps can be extrapolated to more
general systems of coupled oscillators. In a later paper
Atay and Biyikoglu studied systematically the effect of a
broad range of graph operations (Cartesion product, join,
coalescense, adding/deleting links) on network synchro-
nizability [55]. Especially interesting results were
obtained in the case of adding links to networks. First, in
some cases adding links between two networks was
shown to increase the synchronizability of the individual
networks while decreasing the synchronizability of the
combined network. Also, adding links to a single network
could result in smaller path lengths but at the same time
decreased synchronizability. Of course this is reminiscent
of the findings of Nishikawa et al. [53]. although the
authors claim that the degree distribution of a network in
general does not determine its synchronizability. Remov-

Three basic network types in the model of Watts and Stro-gatzFigure 2
Three basic network types in the model of Watts and Stro-
gatz. The leftmost graph is a ring of 16 vertices (N = 16), 
where each vertex is connected to four neighbours (k = 4). 
This is an ordered graph which has a high clustering coeffi-
cient C and a long pathlength L. By choosing an edge at ran-
dom, and reconnecting it to a randomly chosen vertex, 
graphs with increasingly random structure can be generated 
for increasing rewiring probability p. In the case of p = 1, the 
graph becomes completely random, and has a low clustering 
coefficient and a short pathlength. For small values of p so-
called small-world networks arise, which combine the high 
clustering coefficient of ordered networks with the short 
pathlength of random networks.
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ing links from networks can also be used to study commu-
nity structures in networks [43].

Taking the original result of [53]. to the extreme, one
would expect that a network with a maximally homogene-
ous structure would show the highest level of synchroniz-
ability. Donetti et al. (2005) described an algorithm to
generate such 'hyper homogeneous' networks which they
baptized 'entangled networks' [56]. Entangled networks
were shown to be optimal not only in terms of synchro-
nizability, but also with respect to resilience against
attacks and error. However, the authors state that a full
topological understanding of entangled networks has not
yet been reached. Synchronizability of scale-free networks
of limit cycle oscillators was studied in detail using linear
stability analysis by Lee [57]. He found a critical coupling
strength for scale-free networks that was smaller than for
small-world or random networks. The nature of the syn-
chronization transition depended upon the scaling expo-
nent, and showed a different behaviour for the range 2<
exponent<3 as compared to exponent > 3. A relationship
between the scaling exponent of the degree distribution
and pattern formation in scale-free networks has also
been reported by Zou and Lipowsky [58].

An important breakthrough with respect to the 'paradox
of heterogeneity' was achieved by Motter et al. [59]. They
considered directed, weighted networks, where the
weights of the edges were based (with a parameter β)
upon the degrees of the nodes. They showed that in the
case of weighted, directed networks as opposed to
unweighted undirected networks a heterogeneous degree
distribution could be associated with an optimal level of
synchronizability. The most optimal results, both in terms
of synchronizability as well as 'wiring cost' were obtained
for β = 1. In contrast for β = 0 (the unweighted case) the
results of [53]. were reproduced. The authors also sug-
gested that for large sufficiently random networks the syn-
chronizability is mainly determined by the mean degree,
and not by the degree distribution or system size.

Taking this approach one step further, Chavez et al.
showed that network synchronizability could be
enhanced even more by basing the network weights upon
the 'load' (fraction of shortest paths using a particular
link: see 'betweenness' bi defined in section 3.1) of the
links [60,61]. Chavez et al. showed that, in the case of
weighted networks, scale-free networks have the highest
synchronizability, followed (in order of decreasing syn-
chronizability) by random, small-world and regular/lat-
tice network [60,61]. For small-world networks,
synchronizability was shown to increase with the proba-
bility of rewiring. Numerical analysis showed that these
results obtained with linear stability analysis might hold
as well for systems of non-identical oscillators. In particu-
lar, the eigenvalue ratio λN/λ2 could be a useful indicator
of synchronizability even for these networks.

Zhou et al. also studied the synchronizability of weighted
random networks with a large minimum degree (kmin >>
1) [62]. They showed that the synchronizability was
mainly determined by the average degree and the hetero-
geneity of the node's intensity. Intensity is the sum of the
strengths of all inputs of a node, and reflects the degree as
well as the link weights. Synchronizability was enhanced
when the heterogeneity of the nodes intensities was
reduced. In a subsequent study Zhou and Kurths investi-
gated whether optimal weights for synchronizability
could emerge in adaptive networks [63]. They showed
that this was indeed the case in scale-free networks of cou-
pled chaotic oscillators, and that the final weights were
negatively correlated with the node's degrees. The adapa-
tion process enhanced network synchronizability by
reducing the heterogeneity of node intensities. Van den
Berg and van Leeuwen also studied the adaptation process
and showed that sparsely connected random graphs
above a certain size always give rise to a small-world net-
work [64]. In a later study these authors showed that
under the influence of an adaptive rewiring procedure a
network of randomly connected Hindmarsh-Rose neu-

Scale-free graphs are characterized by a scale-free degree distribution P(k)Figure 3
Scale-free graphs are characterized by a scale-free degree 
distribution P(k). In scale-free graphs, different vertices have 
very different degrees, and typically a few vertices with 
extremely high degrees (so-called 'hubs') are present. In the 
schematic example shown here the white (k = 9) and the 
striped (k = 7) vertices are examples of hubs.
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rons will evolve towards a small-world architecture with
complex dynamics [65]. This result was obtained irrespec-
tive of the initial dynamics of the network (irregular firing
or bursting behaviour).

Synchronization in a complex network of coupled oscilla-
tors was studied from a different perspective by Arenas et
al. [66]. They showed that a relation exists between the
complex, hierarchical structure in the connectivity matrix
on the one hand, and different time scales of the synchro-
nization dynamics on the other hand. More specifically,
for short time scales the nodes are disconnected, while for
longer time scales the nodes become synchronized in
groups according to their topological structure. This study
underscores once more the importance of structure func-
tion relationships in complex networks. Related results
were obtained by Zemanova et al. and Zhou et al. [67,68].

4. Applications to neuroscience
4.1 Dynamics of simulated neural networks
From the previous sections is has become clear that a
major research focus in modern network studies is the
relation between network topology on the one hand, and
dynamics on networks on the other hand. This problem is
of major interest for neuroscience, and an important ques-
tion is to what extent the results obtained with models of
general types of oscillators are relevant for networks of
neuron-like elements as well.

Lago-Fernandez et al. were the first to study this question
in a network of non-identical Hodgkin and Huxley neu-
rons coupled by excitatory synapses [69]. They studied the
influence of three basic types of network architecture on
coherent oscillations of the network neurons. Random
networks displayed a fast system response, but were una-
ble to produce coherent oscillations. Networks with regu-
lar topology showed coherent oscillations, but no fast
signal processing. Small-world networks showed both a
fast system response as well as coherent oscillations, sug-
gesting that this type of architecture could be optimal for
information processing in neural networks.

The influence of complex connectivity on neuronal circuit
dynamics was also studied by Roxin et al. [70]. They con-
sidered a small-world network of excitable, leaky inte-
grate-and-fire neurons. For low values of p (the likelihood
of random rewiring) a localized transient stimulus
resulted either in self sustained persistent (mostly peri-
odic) activity or a brief transient response. For high values
of p, the network displayed exceedingly long transients
and disordered patterns. The probability of failure (a stim-
ulus not resulting in sustained activity) showed a phase
transition over a small range of values of p. The authors
concluded that this 'bi-stability' of the network might rep-
resent a mechanisms for short term memory.

Masuda and Aihara showed that in a model of 400 cou-
pled leaky integrate-and-fire neurons small p values gave
rise to travelling waves or clustered states, intermediate
values to rapid communications between remote neurons
and global synchrony, and high p to asynchronous firing
[71]. They also showed that network dynamics can be
influenced by the degree distribution. With so-called 'bal-
anced rewiring' (same degree for all vertices) the optimal
p for synchronization vanished. Increasing p replaced pre-
cise local with rough global synchrony.

Synchronization of neurons in networks is important for
normal functioning, in particular information processing,
but may also reflect abnormal dynamics related to epi-
lepsy. Three modelling studies have addressed this issue
specifically. Netoff et al. started from the observation that
in a hippocampal slice model of epilepsy the CA3 regions
shows short bursts of activity whereas the CA1 regions
shows seizure like activity lasting for seconds [72]. To
explain these observations they constructed models
(small-world networks with N = 3000; k = 30 for CA1 and
k = 90 for CA3) of various types of neurons (Poisson spike
train, leaky integrate-and-fire, stochastic Hodgkin and
Huxley). For increasing values of the rewiring probability,
the models displayed first normal behaviour, then seizure
like transients and finally continuous bursting. Increasing
the strength of the synapses had a similar effect as increas-
ing p. For the CA3 model (with higher k) the transition
from seizures to bursting occurred for a lower value of p
compared to the CA1 model. These findings suggest that
the bursting behaviour of the CA3 region may represent a
dynamical state beyond seizures. This is an important sug-
gestion since similar bursting-like phenomena have also
been observed in the scalp recorded EEGs of neurological
patients, and their epileptic significance is still poorly
understood [73].

Percha et al. started with the observation that in medial
temporal lobe epilepsy, epileptogenesis is characterized
by structural network remodelling and aberrant axonal
sprouting [75]. To study the influence of modified net-
work topology on seizure threshold they considered a
two-dimensional model of 12 by 12 Hindmarsh-Rose
neurons. For increasing values of p they found a phase
transition between a state of local to a state of global
coherence; the transition occurred at p = 0.3. At the phase
transition point the duration of globally coherent states
displayed a power law scaling, consistent with type III
intermittency. The authors speculated that neural net-
works may develop towards a critical regime between
local and global synchronization; seizures would result if
pathology pushes the system beyond this critical state. A
similar concept can be found in two other studies [5,75].
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The influence of temporal lobe architecture on seizures
was also studied by Dyhrfjeld-Johnsen et al. [76]. They
studied a computational model of rat dentate gyrus with
1 billion neurons, and no more than three synapses
between any two neurons, suggestive of a small-world
architecture. They showed that loss of long distance hilar
cells had only little influence on global network connec-
tivity as long as a few of these long distance connections
were preserved. Also, local axonal sprouting of granular
cells resulted in increased local connectivity. Simulations
of the dynamics of this model showed that network
hyperexcitability was preserved despite the loss of hilar
cells.

To explain the dynamics of cultured neural networks
French and Gruenstein investigated two-dimensional
excitatory small-world networks with bursting integrate-
and-fire neurons with regular spiking (RS) and intrinsic
bursting (IB) [77]. The model showed spontaneous activ-
ity, similar to cultured networks. Traces of membrane
potential and cytoplasmatic calcium matched those of
experimental data. For even low values of rewiring proba-
bility the values for the speed of propagation in the model
were within the range of the physiological model. For
higher p and more long distance connections wave speed
increased. Recently it has been shown that real neural net-
works cultured in vitro in multi electrode arrays (MEAs)
display functional connectivity patterns with small-world
characteristics [78].

Higher values of p are known to be associated with
shorted path lengths in the Watts and Strogatz small-
world model. That pathlength is an important predictor of
network performance, as has been shown recently [79].
These authors investigated a two-dimensional lattice of
coupled van der Pol-FitzHugh-Nagumo oscillators and
considered as measures of network performance: activity
and synchronization. They found that network perform-
ance was mainly determined by the network average path
length: the shorter the path length, the better the perform-
ance. Local properties such as the clustering coefficient
turned out to be less important.

The studies discussed above considered networks of exci-
tatory elements only. Shin and Kim studied a network of
1000 coupled FitzHugh-Nagumo (FHN) neurons with
fixed inhibitory coupling strength and an excitatory cou-
pling strength that changed with firing [80]. Starting from
random initial coupling strengths, this network self-
organized to both the small-world and the scale-free net-
work regime by synaptic re-organization and by the spike
timing dependent synaptic plasticity (STDP). The optimal
balance between excitation and inhibition proved to be
crucial, as has been observed in other studies [81].

Paula et al. studied small-world and scale-free models of
2048 sparsely coupled (k = 4) McCulloch and Pitts neu-
rons [82]. In the case of regular topology the model
showed non-periodic activity, whereas random topology
resulted in periodic dynamics, where the duration of the
periods depended on the square root of network size. The
transition between aperiodic and periodic dynamics as a
function of p was suggestive of a phase transition.

Two other studies provide a link with the topic of anatom-
ical connectivity that will be discussed in more detail in
the next section. Zhou et al. and Zemanova et al. investi-
gated the correlations between network topology and
functional organization of complex brain networks
[67,68]. They modelled the cortical network of the cat
with 53 areas and 830 connections as a weighted small-
world network. Each node or area in the network was
modelled as a sub network of excitable FitzHugh-Nagumo
neurons (N = 200; k = 12, SWN topology with p = 0.3;
25% inhibitory neurons; 5% of the neurons receive exci-
tatory connections form other areas). The control param-
eter was the coupling strength g. For weak coupling the
model showed non-trivial organization related to the
underlying network topology, that is correlation patterns
between time series of activity were closely related to the
underlying anatomical connectivity. These results are in
agreement with those of Arenas et al. described above
[66]. In a recent modelling study a close correspondence
between functional and anatomical connectivity was con-
firmed when the functional connectivity was determined
for long time scales [83].

So far, only few studies have studied the relevance of net-
work structure for memory processes in simulated neural
networks. Two behaviors of such networks are relevant for
memory: auto-associative retrieval and self-sustained
localized states ('bumps'). Anishchenko and Treves
showed that the auto-associative retrieval requires net-
works with a structure close to random, while the self-sus-
tained localized states were only found in networks with
a very ordered structure [84]. Coincidence of both behav-
iours in a small-world regime could not be demonstrated
in networks with realistic as opposed to simple binary
neurons.

4.2 Neuroanatomical networks
4.2.1 Real networks
Interestingly, the seminal paper of Watts and Strogatz was
also the first example of an application of graph theory to
a neuroscientific question [16]. Watts and Strogatz stud-
ied the anatomical connectivity of the nervous system of
C. elegans, which is the sole example of a completely
mapped neural network. This neural network could be
represented by a graph with N = 282 and k = 14. Neurons
were considered to be connected if they shared a synapse
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or a gap junction. Analysis of this graph yielded a path
length L = 2.65 (random network: 2.25) and a clustering
coefficient C = 0.28 (random network = 0.05). This repre-
sents the first evidence of small-world architecture of a
real nervous system.

That similar conclusions can be drawn for nervous sys-
tems of vertebrates and primates, was shown by Hilgetag
et al. [85]. They studied compilations of corticocortical
connection data from macaque (visual, somatosensory,
whole cortex) and cat, and analyzed these data with opti-
mal set analysis, non-parametric cluster analysis, and
graph theoretical measures. All approaches showed a hier-
archical organization with densely locally connected clus-
ters of areas. Generally, path lengths were slightly larger
than those of random networks, while clustering coeffi-
cients were twice as large as those of random networks:
macaque visual: L = 1.69 (random 1.65) C = 0.594 (ran-
dom 0.321); macaque somatosensory: L = 1.77 (random
1.72) C = 0.569 (random 0.312); macaque whole cortex:
L = 2.18 (random 1.95) C = 0.49 (random 0.159); cat
whole cortex: L = 1.79 (random 1.67); C = 0.602 (random
0.302). The authors concluded that cortical connectivity
possesses attributes of 'small-world' networks.

This raises the question whether the small-world pattern
of anatomical connectivity determines the patterns of
functional connectivity. Stephan et al. studied data from
19 papers on the spread of (epileptiform) activity after
strychnine-induced dysinhibition in macaque cortex in
vivo [86]. Graph analysis of functional connectivity net-
works gave the following results L = 2.1730 (random:
2.1500); C = 0.3830 (random: 0.0149). This represents
the first proof of a small-world pattern in functional con-
nectivity data, and suggests a relation between anatomical
and functional connectivity patterns. While the study of
Stephan et al. was based upon data from the literature,
Kotter and Sommer modelled the propagation of epilepti-
form activity in a large scale model of the cortex of the cat
and compared the results with randomly connected net-
works [87]. They concluded that association fibres and
their connections strengths were useful predictors of glo-
bal topographic activation patterns in the cerebral cortex
and that a global structure – function relationship could
be demonstrated.

Sporns and Zwi studied data sets of macaque visual and
whole cortex, and cat cortex, comparing the results to both
lattice and random networks, where the in and out
degrees of all vertices were preserved [88]. They computed
scaled values of L and C (that is: L and C related to L and
C of random networks) and looked for cycles. For all three
networks the scaled C was close to that of a lattice net-
work, while the scaled L was close to random networks.
They also found that there was little or no evidence for

scale-free degree distributions, which makes sense in view
of the relatively constant number of 104 synapses per neu-
ron. According to the authors the small-world architecture
of the cortex must play a crucial role in cortical informa-
tion processing.

Some of the same data studied in the above mentioned
papers were re-investigated for the presence of motifs
(connected graphs forming a subgraph of a larger net-
work) by Sporns and Kotter [89]. The authors distin-
guished between structural motifs of size M (specific set of
M vertices linked by edges) and functional motifs (same
M vertices, but not all edges). Graphs were compared to
lattice and random networks which preserved the in and
out degree of all vertices. The authors concluded that
brain networks maximize both the number and diversity
of functional motifs, while the repertoire of structural
motifs remains small.

Kaiser and Hilgetag studied the edge vulnerability of
macaque and cat cortex, protein- protein interaction net-
works, and transport networks [90]. Comparisons were
made with random and scale-free networks. The average
shortest path length was used as a measure of network
integrity, and four different measures were used to iden-
tify critical connections in the network. Of these, the edge
frequency (the fraction of shortest paths using a specific
edge; related to the 'betweenness' discussed in section 3.1)
was the best measure to predict the influence of deleting
an edge on average path length. However, for random and
scale-free networks all measures performed not very well.
Assuming that biological networks are more likely to be
small-world, the edge frequency underscores the impor-
tance (for overall network performance) and vulnerability
of inter-cluster connections. This conclusion is an agree-
ment with Buzsaki et al. who stressed the importance of
long-range interneurons for network architecture and per-
formance [91]. Similarly, Manev and Manev suggested
that neurogenesis might give rise to new random connec-
tions subserving the small-world properties of brain net-
works [92].

Extending the work of Watts and Strogatz and Hilgetag et
al., Humphries et al. investigated whether a specific sub-
network of the brain, the brainstem reticular formation,
displays a small-world like architecture [93]. They consid-
ered two models based upon neuro-anatomical data: a
stochastic and a pruning model, and used a small-world
metric defined as: S = (C/C-r)/(L/L-r). Here, C-r and L-r
refers to the clustering coefficient and path length of cor-
responding ensembles of random networks. They found
that both models fulfil criteria for a small-world network
(high S) for a range of parameter settings; however, the in
degree and out degree distributions did not follow a
power law, arguing against a scale-free architecture.
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The first more or less direct proof of small-world like ana-
tomical connectivity in human was reporter by He et al.
[94]. They studied MRI scans of 124 healthy subjects, and
assumed that two regions were connected if they dis-
played statistically significant correlations in cortical
thickness. For this analysis the entire cortex was seg-
mented into 54 regions. With this approach, the authors
could show that the human brain networks has the char-
acteristics of a small-world network with γ (C/C-r) = 2.36
and λ (L/L-r)= 1.15 and a small-world parameter σ (same
as S defined above) = 2.04. Furthermore, the degree distri-
bution corresponded to an exponentially truncated power
law, as described by Achard et al. [95].

4.2.2 Theoretical and modelling approaches
Supplementing the empirical studies on neuro-anatomi-
cal connectivity several studies have studied the signifi-
cance of connectivity patterns in complex networks from
a more theoretical and modelling based perspective [96].
In particular, Sporns and colleagues have inspired a new
approach called 'theoretical neuro-anatomy' [97]. They
have pointed out that brains are faced with two opposite
requirements: (i) segregation, or local specialization for
specific tasks; (ii) integration, combining all the informa-
tion at a global level [98]. One of the key questions is
which kind of anatomical and functional architecture
allows segregation and integration to be combined in an
optimal way. Sporns et al. studied network models that
were allowed to develop to maximize certain properties.
Networks which developed when optimising for complex-
ity (defined as an optimal balance between segregation
and integration: see [99].) showed small-world character-
istics; also the graph theoretical measures of these net-
works were similar to those of real cortical networks, as
described under 4.2.1. [98]. Furthermore, networks
selected for optimal complexity had relatively low 'wiring
costs'. The authors speculate that this type of network
architecture (complex or small-world like) could emerge
as an adaptation to rich environments [97,99]. In a later
review the authors argued that the emergent complex,
small-world architecture of cortical networks might pro-
mote high levels of information integration and the for-
mation of a so-called 'dynamic core' [21]. This 'dynamic
core' could be a potential substrate of higher cognition
and consciousness.

The notion of an optimal architecture has also been stud-
ied in terms of wiring costs and optimal component place-
ment in neural networks. Karbowski hypothesized that
cerebral cortex architecture is designed to save available
resources [100]. In a model he studied the trade off
between minimizing energetic and biochemical costs
(axonal length and number of synapses). The model
showed some similarity with small-world networks, but
in contrast to these had a distance-dependent probability

of connectivity. Kaiser and Hilgetag studied the well
known anatomical networks of macaque cortex, and C.
Elegans [101]. They showed that optimal component
placement could substantially reduce wiring length in all
tested networks. However, in the minimally rewired net-
works the number of processing steps along the shortest
paths would increase compared to the real networks. They
concluded that neural networks are more similar to net-
work layouts that minimize length of processing paths
rather than wiring length. A different conclusion was
reached by Chen et al. who studied wiring optimisation of
278 non-pharyngeal neurons of C. Elegans [102]. They
solved for an optimal layout of the network in terms of
wiring costs and found that most neurons ended up close
to their actual position. However, these authors also
noted that some neurons got a new position which
strongly deviated from the original one, suggesting the
involvement of other biological factors. One might specu-
late that at least one of the other factors could be an opti-
mal architecture in terms of processing steps as suggested
by Kaiser and Hilgetag [101].

4.3 Functional networks
The following section on fMRI, EEG, and MEG discusses
applications of graph theory to recordings of brain physi-
ology rather than brain anatomy. This approach is based
upon the concept of functional or effectivy connectivity,
first introduced by Aertsen et al. [103]. The basic assump-
tion is that statistical interdependencies between time
series of neuronal activity or related metabolic measures
reflect functional interactions between neurons and brain
regions. Obviously, patterns of functional connectivity
will be restricted by the underlying anatomical connectiv-
ity, but they do not have to be identical, and may reveal
information beyond the anatomical structure. This is
illustrated by the fact that functional connectivity patterns
can display rapid task-related changes, as illustrated in
several studies discussed below. The basic principles of
applying graph analysis to recordings of brain activity are
illustrated in Fig. 4.

4.3.1 Functional MRI
Probably the first attempt to apply graph theoretical con-
cepts to fMRI was a methodological paper by Dodel et al.
[104]. In this methodological study, graph theory was
used as a new approach to identifying functional clusters
of activated brain areas during a task. Starting from BOLD
(blood oxygen level dependent) time series of brain activ-
ity, a matrix of correlations between the time series was
computed, and this matrix was converted to a (undi-
rected, unweighted) graph by assigning edges to all supra-
threshold correlations. With this approach the authors
were able to demonstrate various functional clusters in
the form of subgraphs during a finger tapping task. The
authors noted the problem that the threshold had a signif-
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icant influence on the results, and that criteria for choos-
ing an optimal threshold should be considered.

Eguiluz et al. were the first to study clustering coefficients,
path lengths, and degree distributions in relation to fMRI
data [105,106]. They studied fMRI in 7 subjects during
three different finger tapping tasks, and derived matrices

of correlations coefficients from the BOLD time series.
These matrices were thresholded to obtain unweighted
graphs. In this study BOLD time series of each of the fMRI
voxels were used. The degree distribution was found to be
scale-free, irrespective of the type of task considered. Also,
the clustering coefficient was four times larger than that of
a random network, and the path length was considered

Schematic illustration of graph analysis applied to multi channel recordings of brain activity (fMRI, EEG or MEG)Figure 4
Schematic illustration of graph analysis applied to multi channel recordings of brain activity (fMRI, EEG or MEG). The first step 
(panel A) consists of computing a measure of correlation between all possible pairs of channels of recorded brain activity. The 
correlations can be represented in a correlation diagram (panel B, strength of correlation indicated with black white scale). 
Next a threshold is applied, and all correlations above the threshold are considered to be edges connecting vertices (channels). 
Thus, the correlation matrix is converted to a unweighted graph (panel C). From this graph various measures such as the clus-
tering coefficient C and the path length L can be computed. For comparisons, random networks can be generated by shuffling 
the cells of the original correlation matrix of panel B. This shuffling preserves the symmetry of the matrix, and the mean 
strength of the correlations (panel D). From the random matrices graphs are constructed, and graph measures are computed 
as before. The mean values of the graph measures for the ensemble of random networks are determined. Finally, The ratio of 
the graph measures of the original network and the mean values of the graph measures of the random networks can be deter-
mined (panel F).
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'close to' that of a random network (in fact depending on
the threshold it was 2–3 times larger). The authors con-
cluded that the functional brain networks displayed both
scale-free as well as small-world features. Since these
properties did not depend upon the task, they assumed
that graph analysis mainly reveals invariant properties of
the underlying networks, which might be in a 'critical'
state [106].

A different approach was taken by the Cambridge group
who studied fMRI BOLD time series during a 'resting state'
with eyes-closed and no task [95,107-109]. In the first
study, fMRI was studied in 12 healthy subjects, and BOLD
time series were taken from 90 regions of interest (ROI; 45
from each hemisphere); each of these ROIs corresponded
to a specific anatomical region [107]. From these 90 time
series a matrix of partial correlations was obtained. The
threshold was based upon the significance of the correla-
tions, controlling for false positive findings due to the
large number of correlations with the false discovery rate
(FDR). The authors found a number of strong and signif-
icant correlations, both locally as well as between distant
(intra- and inter-hemispherical) brain regions. Hierarchi-
cal clustering revealed six major systems consisting of four
major cortical lobes, the medial temporal lobe, and a sub-
cortical system. In one patient with a lowered conscious-
ness following an ischemic brain stem lesion a reduction
of left intrahemispherical and interhemispherical connec-
tions was found.

Graph analysis was applied to unweighted graphs using a
significance level of p < 0.05 as a threshold for the partial
correlation matrix. The clustering coefficient of this graph
was 0.25 (random network: 0.12) and the path length
2.82 (random network: 2.58). The ratio C/C-r was 2.08
and the ratio L/L-r was 1.09, both suggestive of a small-
world architecture of the resting state functional network.
The authors noted that the anatomy did not always pre-
dict precisely the functional relationships, and that the
resting state connectivity could be a potentially useful
marker of brain disease or damage, as illustrated by the
patient example. In another study in five subjects the
interdependencies between the BOLD time series were
studied in the frequency rather than the time domain
[108]. Estimators of partial coherence and a normalized
mutual information measure were used to construct the
graphs. The authors found stronger fronto-parietal con-
nectivity at lower frequencies and involvement of higher
frequencies in the case of local connections.

Subsequently an extensive graph analysis of this data set
was performed [95]. Here, wavelet analysis was used to
study connectivity patterns as a function of frequency
band. The corresponding correlation matrices were
thresholded at p < 0.05 using FDR. The resulting graphs

displayed a single giant cluster of highly connected brain
regions (79 out of 90). In this graph the strongest hubs
corresponded to the most recently developed parts of
heteromodal association cortex. The most clear-cut small-
world pattern was found for BOLD data in the frequency
range of 0.03–0.06 Hz. The clustering coefficient was
0.53, and the path length was 2.49. The authors also con-
sidered a small-world index as proposed by Humphries:
(C/C-r)/(L-L-r). This index is expected to be > 1 in the case
of a small world network (relatively high C and low L
compared to corresponding random networks). In the
case of the experimental graph the index was 2.08, con-
sistent with a small-world network. The authors also
investigated the resilience of the network to either 'ran-
dom attack' (removal of randomly chosen vertex) or tar-
geted attack' (removal of largest hubs). They found that
the real brain networks were as resistant to random attacks
as either random or scale-free networks. In contrast, the
real brain networks were more resistant to targeted attacks
than scale-free networks. This finding, as well as the
absence of power law scaling and arguments from brain
development (where hubs develop late rather than early)
suggest to the authors that brain networks are not scale-
free as had been suggested by Eguiluz et al [105]. The
authors conclude that the functional networks revealed by
graph analysis of resting state fMRI might represent a
'physiological substrate for segregated and distributed
information processing'.

Finally, the global and local efficiency measures as intro-
duced by Latora and Marchiori were applied in an fMRI
study in 15 healthy young and 11 healthy old subjects
[109]. The subjects were studied during a resting state no-
task paradigm, either with placebo treatment or with
sulpiride (an antagonist of the dopamine D2 receptor in
the brain). The analysis was based upon wavelet correla-
tion analysis of low frequency correlations between BOLD
time series of 90 regions of interest followed by threshold-
ing. The efficiency measures were related to a 'cost' factor,
defined as the actual number of edges divided by the max-
imum number of edges possible in the graph. Local and
global efficiency, normalized for cost, were shown to be
decreased both in the old compared to the young group
and in the sulpiride condition compared to the placebo
condition. The effect of age on efficiency was stronger and
involved more brain regions than the sulpiride effect.
These results were similar irrespective whether the analy-
sis was done on unweighted or weighted graphs recon-
structed from the correlation matrix.

4.3.2 EEG and MEG
Data derived from functional MRI experiments – whether
task related or resting state – are very suitable for graph
analysis because of their high spatial resolution, In con-
trast, spatial resolution is more problematic with neuro-
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physiological techniques such as EEG and MEG. However,
these techniques do measure directly the electromagnetic
field related to neuronal activity, and have a much higher
temporal resolution.

The first application of graph analysis to MEG was pub-
lished in 2004 [110]. In this experiment MEG recordings
of five subjects during a no-task, eyes-closed state were
analysed. Correlations between the time series of the 126
artefact-free channels studied were analysed with the syn-
chronization likelihood (SL), a non-linear measure of sta-
tistical interdependencies [111,112]. The matrices of pair
wise SL values were converted to unweighted graphs by
assuming an edge between pairs of channels (vertices)
with an SL above a threshold, and no edge in the case of a
subthreshold SL. In all cases the threshold was chosen
such that the mean degree was 15. This analysis was per-
formed for MEG data filtered in different frequency
bands. For intermediate frequencies the corresponding
graphs were close to ordered networks (high clustering
coefficient, and long path length). For low (< 8 Hz) and
high (> 30 Hz) frequencies the graphs showed small-
world features with high C and low L. These results were
fairly consistent when the degree k was varied between 10
and 20, although both C and L increased as a function of
K.

Graph theoretical properties of MEG recordings in healthy
subjects were studied more extensively in a recent paper
by Bassett et al. [1,113]. The authors applied graph analy-
sis to MEG recordings in 22 healthy subjects during a no-
task, eyes-open state and a simple motor task (finger tap-
ping). Wavelet analysis was used to obtain correlation
matrices in the major frequency bands ranging from delta
to gamma. After thresholding unweighted, undirected
graphs were obtained and characterized in terms of an
impressive range of graph theoretical measures such as
clustering coefficient, path length, small world metric σ
([C/C-random]./[L/L-random]. see [93].), clustering,
characteristic length scale, betweenness and synchroniza-
bility (although it is not very well described in the paper
the authors probably refer to the eigenvalue ratio based
upon graph spectral analysis: λN/λ2). In all six frequency
bands a small world architecture was found, characterized
by values of the small world metric σ between 1.7 and 2.
This small-world pattern was remarkably stable over dif-
ferent frequency bands as well as experimental condi-
tions. During the motor task relatively small changes in
network topology were observed, mainly consisting of the
emergence of long distance interactions between frontal
and parietal areas in the beta and gamma bands. Analysis
of the synchronizability showed that the networks were in
a critical dynamical state close to transition between the
non-synchronized and synchronized state.

The first application of graph analysis to EEG was pub-
lished in 2007 [114]. Here a group of 15 Alzheimer
patients was compared to a non-demented control group
of 13 subjects. EEG recorded from 21 channels during an
eyes-closed, no-task state and filtered in the beta band
(13–30 Hz) was analysed with the synchronization likeli-
hood. When C and L were computed as a function of
threshold (same threshold for controls and patients), the
path length was significantly longer in the AD group. For
very high thresholds it was noted that the graphs became
disconnected, and the pathlength became shorted in the
AD group. When C and L were studied as a function of
degree k (same K for both groups), the path length was
shorter in the AD group, but only for a small range of K
(around 3). For both controls and patients the graphs
showed small-world features when C and L were com-
pared to those of random control networks (with pre-
served degree distribution). A higher mini mental state
examination score (MMSE) correlated with a higher C and
smaller L. The results were interpreted in terms of a less
optimal, that is less small-world like network organiza-
tion in the AD group.

Bartolomei et al. applied graph analysis to MEG resting
state recordings in a group of 17 patients with brain
tumours and 15 healthy controls. [115]. Unweighted
graphs were obtained from SL matrices of MEG filtered in
different frequency bands, using an average degree k of 10,
and a network size (number of channels) of 149. Mean SL
values were higher in patients in the lower frequency
bands (delta, theta and alpha), and lower in the higher
frequency bands (beta and gamma). In patients the ratio
of the clustering coefficient and the mean clustering coef-
ficient for random networks (C/C-r) was lower than in
controls in the theta and gamma band (for right sided
tumours); the ratio of pathlength and mean pathlength of
random networks (L/L-r) was lower in patients in the
theta band, the beta band (for left sided tumours) and the
gamma band (for right sided tumours). The general pat-
tern that emerges from this study is that pathological net-
works are closer to random networks, and healthy
networks are closer to small-world networks. Interest-
ingly, such random networks might have a lower thresh-
old for seizures (which occur frequently in patients with
low grade brain tumours) than small-world networks.

In two related studies Micheloyannis et al. applied graph
analysis to 28 channel EEG recorded during an 2-back
working memory test [116,117]. In both studies EEG fil-
tered in different frequency bands was analysed with the
SL, and converted to unweighted graphs either as a func-
tion of threshold, or as a function of degree K (with K = 5).
Also, the ratios C/C-r and L/L-r were computed, relating
the C and L to those of random networks with the same
degree distribution. In the first study 20 healthy subjects
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with a few years of formal education and a low IQ were
compared to 20 healthy subjects with university degrees
and a high IQ [116]. Mean SL did not differ between the
two groups. Graph analysis of the no-task condition did
not show differences between the groups either. However,
during the working memory task the networks in the
group with lower education as compared to the highly
educated group were closer to small-world networks as
revealed by a higher C/C-r and a lower L/L-s in the theta,
alpha1, alpha2, beta and gamma band. The results were
explained in terms of the neural efficiency hypothesis: the
lower educated subjects would 'need' the more optimal
small-world configuration during the working memory
task to compensate for their lower cognitive abilities.

In the second study the 20 control subjects with higher
education were compared to 20 patients with schizophre-
nia (stable disease, under drug treatment). During the
working memory task the C/C-r was lower in the schizo-
phrenia group compared to controls in alpha1, alpha2,
beta and gamma bands. Consequently, task related net-
works in the schizophrenia group were less small-world
like, and more random compared to controls. Combining
these results with those of the first study there is a decrease
of small-world features going from controls with low edu-
cation to controls with high education, and then from
controls with high education to schizophrenia patients.
One might speculate that the controls with low education
display a compensation mechanism during the task,
which is not needed by the highly educated controls and
which completely fails in the case of the patients. Of inter-
est, the notion of a more random network in schizophre-
nia has recently been confirmed in a study in 40 patients
and 40 controls [118]. In this EEG based study the
patients were characterized by a lower clustering coeffi-
cient, a shorter path length and a lower centrality index of
the major network hubs. It should be noted that the
patients in the Micheloyannis et al and the Breakspear et
al studies were treated with antipsychotic drugs, and that
an influence of the drug treatment on the network features
was found in the Breakspear et al study. Thus, the 'net-
work randomization' could reflect both disease as well as
pharmacological effects.

The two studies by Micheloyannis et al. [116,117]. and
the study by Bassett et al. [113]. showed the influence of a
cognitive or motor task on network topology. This raises
the question to what extent network features such as C
and L reflect 'state' or 'trait' characteristics. In this context,
changes during sleep are of interest. Ferri et al. showed
that network properties change during sleep [119]. In 10
healthy subjects 19 channel EEG recordings filtered
between 0.25–2.5 Hz were analysed with the synchroniza-
tion likelihood. Unweighted networks were derived from
the SL matrices with a fixed K = 3. The ratio C/C-r but not

the ratio L/L-r was found to increase during all sleep stages
compared to the awake state; however there were no dif-
ferences between the various sleep stages. When the sleep
architecture was studied in more detail taking into
account to CAP (cyclic alternating pattern) phases a
higher increase in C/C-r during the CAP A1 phase than
during CAP B phase was found. Thus networks features
can change during a cognitive task as well as under the
influence of sleep. However, there is preliminary evidence
that network properties have strong 'trait' characteristics
as well. Dirk Smit et al. applied graph analysis to no-task
EEG recordings in a large sample of 732 healthy subjects,
consisting of mono and dizygotic twins and their siblings
(Smit et al, 2006) [120]. In a previous study it was already
shown that the mean SL has a strong genetic component,
especially in the alpha band (Posthuma et al., 2005)
[121]. In the study of Smit et al, both C and L in showed
substantial and significant heritability in theta, alpha1,
alpha2, beta1, beta2 and beta 3 bands. Furthermore,
small-world like properties of the theta and beta band
connectivity were related to individual differences in ver-
bal comprehension [120].

The change in network properties during a physiological
change in level of consciousness such as sleep raises the
question whether network properties might also be
affected by pathological changes in consciousness such as
occur during epileptic seizures. Two modelling studies
have pointed at the importance of network topology for
spread of epileptic activity in a network [72,74]. A first
preliminary report on network analysis of EEG depth
recordings in a single patient during an epileptic seizure
was published by Wu and Guan [122]. The authors con-
structed graphs with N = 30 by using both channels (six)
and different frequency bands (five) to construct un
weighted networks with degrees varying from 4–7. The
bispectrum was used to extract phase coupling informa-
tion form the EEG. During the seizure a change in network
configuration was detected in the direction of a small-
world network: there was an increase in C and a decrease
of L. Conversely, one might argue that the preceding
interictal network was relatively more random.

In a larger study Ponten et al. investigated seven patients
during temporal lobe seizures recorded with intracranial
depth electrodes [123]. EEG time series filtered in various
frequency bands were analysed with the synchronization
likelihood, and the SL matrices were converted to
unweighted graphs with a fixed degree of 6. A slightly
modified definition of L was used (L was defined as the
harmonic mean instead of the arithmetic mean of the
shortest path lengths: see section 3.1 of this paper) which
dealt conveniently with the problem of disconnected
points. During seizures the ratio C/C-r increased in delta,
theta and alpha bands; L/L-r also increased in the same
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bands. Thus ictal changes reflected a movement away
from a random interictal towards a more ordered ictal net-
work configuration. This suggests that epilepsy might per-
haps be characterized be interictal networks with a
pathological random structure. Such a random structure
has an even lower threshold for the spreading of seizures
than the normal small-world configuration (random net-
works are more synchronizable than small-world net-
works: see [60,61].); the results of Bartolomei et al. [115].
seem to be in agreement with this hypothesis and suggest
that 'network randomisation' might be a general result of
brain damage. Needless to say that this bold hypothesis
has to be explored in further studies.

5. Conclusions and future prospects
To conclude this review we would like to draw some con-
clusions and suggest a number of problems to be
addressed by future research. A first important conclusion
is that the modern theory of networks, which originated
with the discovery of small-world and scale-free networks,
is a very useful framework for the study of large scale net-
works in the brain. There are several reasons for this: (i)
the new theory provides us with powerful realistic models
of complex networks in the brain; (ii) a large and still
increasing number of measures becomes available to
study topological and dynamical properties of these net-
works; (iii) the theory allows us to better understand the
correlations between network structure and the processes
taking place on these networks, in particular synchroniza-
tion processes; (iv) by relating structure to function the
notion of an optimal network (in terms of balancing seg-
regation and integration, and performance and cost) can
be formulated; (v) the theory provides scenario's how
complex networks might develop, and how they might
responds to different types of damage (random error ver-
sus targeted attack). These considerations explain the
motivation to apply modern network theory to neuro-
science.

A second conclusion is that modelling studies with neural
networks underscore importance of structure function
relationships suggested by more fundamental work, and
point in the direction of systems with a critical dynamics
close to onset of synchronization. Of considerable clinical
interest is the work suggesting a relationship between net-
work structure and pathological synchronization, provid-
ing a possible mechanism for [72,74,122,123].

Thirdly, anatomical studies suggest that neural networks,
ranging from the central nervous system of C. elegans to
cortical networks in the cat and macaque, may be organ-
ized as small-world networks, and that patterns of func-
tional connectivity may follow the same pattern [83,85-
87].

Fourth, some preliminary conclusions can be drawn from
studies of functional connectivity in humans: (i) most
studies point in the direction of a small-world pattern for
functional connectivity, although scale-free networks
have also been described (Eguiluz et al., 2005); (ii)

the small-world topology of functional brain networks is
very constant across techniques, conditions and frequency
bands; tasks induce only minor modifications; (iii) the
architecture of functional brain networks may reflect
genetic factors and is related to cognitive performance;
(iv) different types of brain disease can disrupt the opti-
mal small-world pattern, sometimes giving rise to more
random networks which may be associated with cognitive
problems as well as a lower threshold for seizures (patho-
logical hypersynchronization).

Some of these conclusions may provide useful starting
points for future studies. However, any future work in this
field will also have to consider a number of methodolog-
ical issues. For one thing it is not yet clear what is the opti-
mal way to convert functional imaging data (derived from
fMRI, EEG or MEG) to graphs for further analysis. In the
case of EEG and MEG the influence of volume conduction
on graph measures has not been considered, although it is
possible that assessment of the clustering coefficient is
biased by this. This raises the question whether the analy-
sis should be done in signal or in source space, and if
source reconstruction is needed, what algorithm should
be used. Another problem is somewhat arbitrary thresh-
old that is needed to convert a matrix of correlations to an
unweighted graph. The choice of the threshold remains a
bit arbitrary, and studying a whole range of thresholds
may raise statistical problems (type II errors) because of
the large number of tests that have to be done. One way
out may be to model correlation matrices as weighted
graphs, taking into account the full information available.
However, at this time only few measures are available for
weighted graphs. A further problem that frequently occurs
when converting matrices of correlations to graphs is the
fact that some of the nodes may become disconnected
from the network; this presents difficulties in the calcula-
tion of clustering coefficients and path lengths. Use of glo-
bal and local 'efficiency' measures, and harmonic instead
of arithmetic means might provide a solution here [27]. A
final remark is that the whole spectrum of graph theoreti-
cal measures has not yet been explored in most neuro-
science studies. An example of study that makes use of a
broad range of graph measures is the recent paper by Bas-
sett el al. [113]. Future studies could gain by a careful con-
sideration of all the graph measures which are currently
available, and the new measures that are described in
physics papers.
Page 16 of 19
(page number not for citation purposes)



Nonlinear Biomedical Physics 2007, 1:3 http://www.nonlinearbiomedphys.com/content/1/1/3
Finally, a number of conceptual issues for future studies
deserve mentioning. Some of the questions that have to
be addressed by new studies are the following: (i) how
does network structure change during growth and devel-
opment? Some theoretical studies have suggested sce-
nario's explaining how small-world or scale-free networks
could emerge by activity dependent changes, but whether
these scenario's are a proper description of human brain
development is an open question; (ii) related to this prob-
lem: it is important to know how do genetic and environ-
mental factors influence network features? An influence of
genetic factors on network properties in young adults has
been suggested, but the underlying mechanisms are com-
pletely unknown. (iii) which network factors provide the
best explanation for cognitive functioning? It is clear that
certain network properties may be associated with
increased synchronizability, and that cognition depends
upon the formation and dissolution of synchronized net-
works in the brain? It is not yet known which network
properties are the best predictors of cognitive functioning;
(iv) is it possible to detect different characteristic scenarios
by which brain pathology changes network structure and
function? In particular, could it be that different types of
brain disease may be related to either 'random error' or
'targeted attack' of brain networks, and is it possible to
predict when and how brain disease will give rise to clini-
cal symptoms? Related to this: could a better understand-
ing of neurological disease at the network level give rise to
new treatment approaches? (v) is there a relationship
between network properties and susceptibility for sei-
zures? Here the hypothesis that brain disease will convert
a healthy small-world network to a more random network
with a stronger synchronizability, and thus a lower thresh-
old for pathological synchronization/seizures needs fur-
ther exploration. (vi) is there a relationship between the
'giant cluster' which emerges at the onset of synchroniza-
tion and consciousness? The relationship between a single
cluster of synchronized neurons and brain areas and con-
sciousness has been suggested by several authors
[124,125]. Graph theory could extend these ideas by pro-
viding an explanation how and when such a giant cluster
will appear in neuronal networks, and what properties it
is likely to have.
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