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Influence of the distensibility of large arteries on
the longitudinal impedance: application for the
development of non-invasive techniques to the
diagnosis of arterial diseases
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Abstract

Background: This study shows that the arterial longitudinal impedance constitutes a hemodynamic parameter of interest
for performance characterization of large arteries in normal condition as well as in pathological situations. For this purpose,
we solved the Navier–Stokes equations for an incompressible flow using the finite element analysis method and the
Arbitrary Lagrangian Eulerian (ALE) formulation. The mathematical model assumes a two-dimensional flow and takes into
account the nonlinear terms in the equations of fluid motion that express the convective acceleration, as well as the
nonlinear deformation of the arterial wall. Several numerical simulations of the blood flow in large vessels have been
performed to study the propagation along an arterial vessel of a pressure gradient pulse and a rate flow pulse. These
simulations include various deformations of the wall artery leading to parietal displacements ranging from 0 (rigid wall) to
15% (very elastic wall) in order to consider physiological and pathological cases.

Results: The results show significant changes of the rate flow and the pressure gradient wave as a function of aosc, the
relative variation in the radius of the artery over a cardiac cycle. These changes are notable beyond a critical value of aosc
equal to 0.05. This critical value is also found in the evolution of the longitudinal impedance. So, above a variation of radius
of 5%, the convective acceleration, created by the fluid-wall interactions, have an influence on the flow detectable on the
longitudinal impedance.

Conclusions: The interpretation of the evolution of the longitudinal impedance shows that it could be a mean to test the
performance of large arteries and can contribute to the diagnosis of parietal lesions of large arteries. For a blood vessel with
a wall displacement higher than 5% similar to those of large arteries like the aorta, the longitudinal impedance is
substantially greater than that obtained in the absence of wall displacement. This study also explains the effects of
convective acceleration, on the shape of the decline of the pressure gradient wave and shows that they should not be
neglected when the variation in radius is greater than 5%.
Background
The elasticity of large arteries which represent the princi-
pal arterial function made that they constitute a very dis-
tensible reservoir. Their role is to transform pulsatile
flow at the outlet of the heart in a continuous flow in the
capillary bed. Consequently, the loss of distensibility is
considered a cardiovascular risk factor [1]. This increased
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and reproduction in any medium, provided the
rigidity is due to age [2-4] or to various diseases such as
hypertension or atherosclerosis [5-8]. Several methods
have been proposed for measuring the elasticity of arter-
ies, these methods are based on several techniques such
that tonometry, mechanical transducers, echotracking,
ultrasonic Doppler, functional Magnetic Resonance Im-
aging (MRI) and photoplethysmography [9]. However,
these methodologies have limitations because some of
them may apply only to superficial arteries. Others, such
that ultrasonic Doppler and functional MRI, where the site
of interest is the deep arteries, are mainly based on the lin-
ear theory developed by Womersley [10,11], which is not
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applicable in the case of large arteries like the aorta. In-
deed, the wall displacements of the large arteries are of fi-
nite amplitude and thus the convective acceleration
(advection terms) introduce important nonlinear effects
[12-14]. In normal physiological situations, the change in
radius of these arteries is greater than 10% of the diastolic
radius; this is due to the large number of elastin fibers,
highly elastic, despite the presence of collagen fibers in the
arterial wall. The collagen fibers having an elastic modulus
of 3 to 100 times greater than that of elastin fibers are soli-
cited from a pressure of 120mmHg [15,16]. Beyond that
pressure, and especially from 140mmHg (hypertension),
we observe a hardening of the arteries and a nonlinear
mechanical behavior of the wall.
In this study we are studying the effect of large defor-

mations induced by the mechanical behavior of large ar-
teries (radius of about 1 cm) on the longitudinal
impedance. The longitudinal impedance would be an
index of clinical interest to quantify the performance of
local arterial function especially if it is measured using
the techniques of Doppler and MRI. For this purpose,
we have solved numerically the equation of Navier–
Stokes using Finite Element Analysis (FEA), taking into
account the fluid - structure interactions expressed by
the convective acceleration terms. To be in a real situ-
ation, i.e. in physiologically conditions normal and
pathological, we determined the hemodynamic quantities
in the arteries where the radius varies from 0% (rigid ar-
terial wall) up to 15% (arterial wall very elastic) of the
diastolic radius.

Methods
For large arteries, blood can be considered Newtonian
[17]. We have therefore considered it as a viscous incom-
pressible fluid of dynamic viscosity η= 0.005 Pl and of
density ρ= 1050 kg.m-3, flowing, in a cylindrical duct of
diastolic radius set to 1 cm. The flow regime is charac-
terized by the frequency parameter α introduced by
Womersley which is equal to 11.49; this parameter
reflects the importance of inertial effects relative to vis-
cous effects. If the frequency pulsation is ω= 6.28 s-1, α
is expressed as follows:

α ¼ R0

ffiffiffiffiffiffi
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η

r
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Governing equations
The mathematical model is based on axisymmetric flow
described by the vector equation of Navier - Stokes and
the continuity equation for a velocity field at time t,
→V→ U r; z; tð Þ;W r; z; tð Þ½ � and of pressure P (z, t) in the
cylindrical coordinate system (r, z), where r and z are re-
spectively the radial and axial coordinate. Knowing that
the pressure is quasi-constant over the cross-sectional of
the blood vessel area [18]
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Where W (r, z, t) and U (r, z, t) are the components of
blood velocity in the longitudinal and radial directions
and P (r, z, t) is the pressure. As we can see, equations
(3) and (4) have nonlinear terms, corresponding to the
convective accelerations. We have solved numerically
these equations taking into account the nonlinear terms
in order to study the influence of the distensibility on
the flow. The nonlinear behavior of the arterial wall will
be taken into consideration in the boundary conditions
as described thereafter.

Boundary conditions
The boundary conditions at the wall and at the center
assume an axisymmetric flow and no-slip on the wall
expressed as follow [18-20]:

U R; z; tð Þ ¼ ∂R
∂t

W R; z; tð Þ ¼ 0 U 0; z; tð Þ

¼ 0
∂W
∂r r¼0 ¼ 0j ð5Þ

R (z, t) is the inner radius of the vessel, which is a
function of z and t because of the radial deformability.
The first condition expresses that longitudinal move-
ments of the arterial wall are neglected, which is largely
justified in the work of Carew [17] and Patel [18]. The
other boundary conditions at the wall (r = R) and at the
center (r = 0) assume an axisymmetric flow and no slip
on the wall.
We express the radial displacement of the arterial wall

as follows:

R z; tð Þ ¼ R0 � aosc 1− cos ωt−ω
z
c

� �h i
þ R0 ð6Þ

Where ΔR represents the amplitude of the radial dis-
placement during a cardiac cycle and aosc ¼ ΔR

R0
is the
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relative variation of the radius. To show the effect of
distensibility of these arteries on the flow in normal
and pathological conditions, we performed numerical
simulations for different values of aosc ranging from
0 (rigid wall–severe pathological case) to 0.15 (very
elastic wall). The phase velocity c was calculated from
the relationship established by Thomas Young:

c ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
R0

ρ

ΔP
ΔR

s
ð7Þ

ΔP is the amplitude of pressure corresponding to ΔR
and so aosc. In large arteries the relationship between
ΔP and ΔR is nonlinear due to the nonlinear dependence
of the elastic modulus of arterial wall with the pressure
[21]. The nonlinear behavior of the arterial wall is pro-
duced by imposing, at the entrance (z = 0), a sinusoidal
pressure with a frequency of 1 Hz, in order to obtain an
input rate flow virtually identical whatever the value of
aosc:

P z ¼ 0ð Þ ¼ ΔP 1− cos ωtð Þ½ � þ �
P ð8Þ

The values of ΔP and of the average pressure
�
P are set

to yield a constant flow at z = 0. Thus, the nonlinear
mechanical behavior is introduced in the terms ΔP and
ΔP/ΔR.

Numerical simulation
The simulation was performed using the finite element
method and a formulation specifically Arbitrary Lagran-
gian Eulerian (ALE) [22], to take into account the fluid -
structure interactions. In the fluid domain, a mixed for-
mulation velocity - pressure has been implemented.
ALE-methods are frequently used to model systems
where the physical domain changes with respect to time.
Common examples can be found in the field of fluid–
structure interactions where the domain movement is
due to the force that the fluid exerts on a solid object.
These systems have gained a lot of interest to describe
blood flows in hemodynamic.
The calculations were performed using a 2D axisym-

metric mesh of 26 elements in the radial direction and
250 elements in the axial direction for a length equal to
25cm (see Figure 1). We run the simulation on a Matlab
platform for six values of aosc. Secondly, we have per-
formed systematically a Fourier analysis of the pulses
computed in our simulation (pressure, rate flow and
pressure gradient). There are two approaches to explain
the fluctuations of hemodynamic quantities. The first is
to analyze the arterial pulse in the frequency domain
through the description of the pulse in terms of its har-
monic components (amplitude, frequency. . .). The sec-
ond, traditional approach used in medical practice, is an
analysis in the time domain to look for an explanation of
the fluctuations of the arterial wave contour. We have
chosen to apply the two approaches to correlate the shape
of the wave-contour with the amplitude of different harmo-
nics that compose it when the vascular distensibility varies.
The longitudinal impedance is calculated from the
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like to point out here that there is no linear relationship
between the components of the pressure gradient and
those of the flow since these quantities are the solutions
of the nonlinear equations governing the flow. However,
the Fourier analysis is quite justified by the fact that
pressure gradient and rate flow are periodic signals.

Results
Input data
For each model (for each value of aosc) several tests were
conducted in order to find the ideal pressure (time-depend-
ant pressure) at the entrance of the vessel (z= 0) (Figures 2
(a) and 3(a)), corresponding to a typical aortic waveform
flow (z =0). The rate flow varies from 0 to 16.10-5m3. s-1

over the cardiac cycle, as shown in Figures 2(b) and 3(b).
We observe in Figure 3(a) and (b) their amplitudes obtained
after a Fourier analysis. To get the same rate flow at the en-
trance (z =0) in each model, we see that the amplitudes of
pressure we are selected decrease with aosc (Figure 2(a)).
The wave of the rate flow (Figure 2(b)) has a distorted shape
whereas the pressure wave at the entrance has been
imposed as sinusoidal. Indeed, the Fourier analysis shows in
Figure 3(b) the presence of a second harmonic whose amp-
litude becomes relatively large for aosc≥0.07.

Hemodynamic results
To examine the influence of distensibility of the ar-
terial wall on the pressure gradient and rate flow, we
have represented in Figure 4(a) and (b) their respect-
ive waveforms calculated in each model at 10 cm and
20 cm from the entry. The mean and pulsatile ampli-
tudes of these two quantities are shown in Figure 5.
The representation of these amplitudes as a function
of aosc allows us to examine the effect of the elasti-
city of the wall of large arteries on the hemodynamic,
locally (mean flow) and at distance (pulsatile flow). In
fact, aosc, which by definition characterizes the dis-
tensibility of the arteries, also informs us on their
elasticity. The evolution of the fundamental amplitude
of the longitudinal pressure gradient, − ∂P

∂z as a func-
tion of aosc (Figure 5(b)) presents a minimum at



Figure 1 Sample of meshes used.
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aosc = 0.05, while the mean pressure gradient is max-
imum (Figure 4(b)).
Longitudinal impedance
The longitudinal impedance was obtained by performing
the ratio of the amplitude of the pressure gradient and rate
flow. As shown in Figure 6(a) the evolution of the funda-
mental amplitude of the longitudinal impedance as a func-
tion of aosc also has a minimum at aosc= 0.05. The value
of aosc = 0.05 appears to represent a critical point of the
Figure 2 (a) Input signal of pressure – (b) Input signal of rate flow.
movement of the wall beyond which the fluid - wall inter-
action would occur in both directions (fluid to wall and
wall to fluid).
Discussion
The Fourier analysis of various pressure pulses obtained at
the inlet of the blood vessel, shows that its amplitude
decreases with aosc (Figure 2(a)). This indicates the role of
damping played by the nonlinear elasticity of the wall. This
last result is similar to the experimental results of



Figure 3 (a) Amplitude of Input pressure – (b) Amplitude of Input of rate flow. The amplitudes are obtained after Fourier transform
implemented on the platform Matlab.
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Armentano [16]. With regard to the wave of rate flow and
of the pressure gradient at the inlet and at distance (10cm,
20cm) we found a distortion of their shape that becomes
more pronounced when the distensibility of artery
increases (see Figures 2(b), 4(a) and (b)). Fourier analysis
shows the presence of a second harmonic whose ampli-
tude increases with aosc (Figures 3(a) and 5), despite that
the wave of the pressure at the inlet was imposed sinus-
oidal. The appearance of this second harmonic reflects the
fact that the strong coupling fluid–structure causes signifi-
cant convective acceleration. These quantities give us an
answer on the shape of the pressure and of the flow wave-
contour in very elastic arteries like the aorta.
The Evolution of the fundamental amplitude of longi-

tudinal pressure gradient, − ∂P
∂z (Figure 5(b)) for aosc

> 0.05 is inconsistent with the conventional results of
the fluid mechanics, while that for aosc< 0.05 they are
in accordance. The high value of the fundamental ampli-
tude of the pressure gradient obtained for aosc ≥ 0.10
shows the influence of the convective accelerations on
the pulsatile flow. We observe two regimes of flow, one,
depending on the radius and the other dominated by the
elastic behavior, these two behaviors being defined by a
critical value of aoscc = 0.05. This critical value would
correspond to the limit of the radius variation where the
assumption of linearization of Navier - Stokes equations
can be applied.
The decreasing part of the mean pressure gradient

(Figure 4(b)) can be explained only by the fact that
the convective acceleration have a significant effect on
the flow of large arteries and therefore cannot be
neglected for the large strains (aosc ≥ 0.10). For aosc ≥
0.10 we observe a reverse pressure gradient. This sug-
gests that the convective effects caused by the elasti-
city of large arteries play an important role on the
hemodynamic of this type of artery by reducing the
wall arterial stress. This finding would result in a re-
duction of energy dissipation and preservation of
endothelial cells [23,24]. In summary, we can say that
the influence of the convective acceleration developed
on the flow is felt locally (mean pressure gradient)
and at distance (pulsatile gradient pressure).

In the light of the above remarks, it seems that the
nonlinear model preserves the pulse shape much better
than the linear propagation mathematical model. The
shape of the pressure gradient pulses, obtained from the
aosc values equal to 0.10 and 0.15, reproduces with a
certain similarity the pressure gradient pulses encoun-
tered in large elastic arteries like the aorta. On these
physiological curves, one finds the same type of diastolic



Figure 4 Signal of rate flow and pressure gradient at various sites. The pressure gradient and rate flow are computed at z = 0.10m and
z = 0.20m.
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decrease (except the incisura caused by the closure of
the aortic valve) which is traditionally explained by the
superposition of the incident wave and reflected wave.
However, several experimental studies have been designed
to test the accuracy of the theoretical formulations of
Figure 5 (a) Amplitude of rate flow – (b) Amplitude of pressure gradi
respective signals computer in z =0.10m and z = 0.20m.
propagation in describing the physiological phenomenon
[12-14]. These experiments have shown that many
hemodynamic quantities computed by the linear propa-
gation mathematical models are very different from the
corresponding measured values and could not explain
ent. The amplitudes are determined from a Fourier transform of



Figure 6 Amplitude of Longitudinal impedance. The amplitudes are computed from the ratios of amplitudes of the pressure gradient and of
the rate flow.
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the deviation between observations and theory. To get a
better response with the linear model, Reuderink and al
[25] introduce the wall viscoelasticity and conclude that
wall viscoelasticity is able to compensate the lack of
convective accelerations in the linear model quite well.
In other studies [26] this is the tapering of the tube that
is introduced; however, this parameter is not involved in
the large arteries. It seems that the nonlinear terms of
the Navier–Stokes equations increase with the deform-
ation, meaning that the elasticity of the wall also plays a
role in the shape of the pulse decay by making it less
steep.
The physical interpretation of the changes in the pres-

sure gradient according to the variation in radius can be
performed only when is reported to the rate flow, hence
the calculation of the longitudinal impedance. We have
therefore calculated the amplitudes of longitudinal im-
pedance from the values of longitudinal pressure gradi-
ent and rate flow for each simulation. The fundamental
amplitude of the longitudinal impedance Figure 6(a) has
also a minimum at aosc = 0.05. The decreases of the im-
pedance for aosc ≤ 0.05 reflects the fact that the flow
becomes less resistant due to the increase in radius dur-
ing the cardiac cycle, whereas, for aosc> 0.05, it tends to
increase and to become more important than the rigid
case (aosc = 0). The results found for aosc ≤ 0.05 are con-
sistent with those observed in medium-sized arteries,
which main role is to perfuse the blood downstream (see
additional file 1). This last result is also encountered in
large arteries in some pathology leading to a hardening of
the arteries such as hypertension or atherosclerosis. We
can explain the increase of the fundamental longitudinal
impedance, for values of aosc≥ 0.05 by the fact that a part
of the volume of fluid remained stored inside the blood
vessel (see additional file 2 and 3). We have seen, above,
the importance of convective effects for these values of
aosc, which also contributes to mass transport. Normally,
the increases of the fundamental pressure gradient ampli-
tude would have led to a significant increase in the funda-
mental rate flow amplitude. However, we observe the
opposite. In fact, we see that the pulsatile rate flow
diminishes with aosc at a distance of 20 cm, while it was
practically constant at the entrance. These results are very
remarkable for values of aosc equal to 0.10 and 0.15,
encountered in very elastic arteries. Thus, knowledge of
the longitudinal impedance allows us to assess the ability
of the artery to store a certain volume of blood.
As shown in Figure 6(b) the mean amplitude of the

longitudinal impedance is much smaller than the pulsa-
tile component (fundamental and second harmonic). In
fact, different studies [27,28] on the "sleeve effect" and
on the hemodynamic effects of vein grafts show that it is
the pulsatile components that are most useful to quantify
the performance of the local arterial function. However,
their studies are based on Womersley's solutions applic-
able only in small arteries where the parietal displacements
(aosc) are well below 0.05. Our focus being to study the
role of wall elasticity on the local hemodynamic and
chiefly at the level of large arteries, we have not, in our
simulation, used restrictive assumptions on the convective
acceleration terms which are the nonlinear terms of the
Navier - Stokes. In [27,28] the authors have also shown
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that the longitudinal impedance, increases with the fre-
quency, we observe the same trend for the second har-
monic at z = 0.10m and aosc< 0.05, see Figure 5(a).
Nevertheless, for the other cases (z = 0.10m–aosc> 0.07
and z =0.20m–0≤ aosc≤ 0.15) our simulation shows that
the second harmonic of the longitudinal impedance is
lower than the fundamental and decreases when aosc
increases. This is due to the fact that the rate flow and the
pressure gradient vary in the same proportion and thus,
the convective effects are less important at frequencies
above the fundamental. Although the artery longitudinal
impedance is usually used as intermediate parameter in
calculations, our study has shown a correlation between
the longitudinal impedance and the mechanical properties
of the wall artery, meaning that it can constitute a clinical
important clue for the screening of diseases caused by a
change in the mechanical behavior of arteries. Indeed, sev-
eral studies have shown the incidence of arterial stiffness
on cardiovascular disease. Our previous work [29,30] have
shown that the pressure gradient and rate flow can be
determined from the rate flow and therefore from velo-
cimetry data at the center of blood vessel, thus, it would
be interesting to access this index from non-invasive tech-
niques like ultrasonic Doppler or MRI.
In our numerical model we have been subject to cer-

tain limitations as the frequency range and reflections.
We do not consider multiple reflections caused by the
structure of the arterial system because we want to show
the response of the elasticity of the arteries on the flow
[13,31,32]. Indeed, previous work [30,33-35] shows that
the extraction of the incident wave would assess the per-
formance of the heart and arterial system. Regarding fre-
quency, the frequency of 1 Hz is often used in the
literature because it represents the fundamental fre-
quency of blood pressure that determines the shape and
amplitude of the waveform flow.

Conclusions
The main results concern the effects of the elasticity and
the loss of elasticity of the arterial wall on the flow wave-
form and the hemodynamic.
The study of the waveform is useful for the hemodynamic

signal processing. Our results show that the variation in the
radius of the artery during a cardiac cycle effects the
hemodynamic. We observe two types of behavior defined
by a critical point corresponding to a variation of the radius
equal to 5% (aosc). This critical point represents the limit of
deformation of the arterial wall beyond which the convect-
ive acceleration terms play a significant role on the flow.
The longitudinal impedance was calculated to interpret

the effects of convective acceleration on the flow. The
results show that for aosc> 0.05 the convective acceler-
ation decelerate the flow so that a portion of blood vol-
ume is retained in the upstream of the artery. The
longitudinal impedance would, therefore, be a clinically use-
ful parameter to assess the elasticity of the arteries, in order
to detect and localize vascular diseases affecting the wall of
the elastic arteries like the aorta. Thus, determination of the
longitudinal impedance, for a functional exploration of the
arterial system, could be performed by non-invasive techni-
ques such as ultrasonic Doppler velocimetry.

Additional files

Additional file 1: Movie simulating the flow when aosc = 0. This film
was made from hemodynamic data obtained in our simulation. This
model simulates flow in large arteries (1 cm radius) where the wall does
not deform aosc = 0: pathological case.

Additional file 2: Movie simulating the flow when aosc = 0.05. This
film was made from hemodynamic data obtained in our simulations. This
model simulates the flow in large arteries (1 cm radius), where the
deformation is small compared to that of large arteries AOSC = 0.05:
pathological case.

Additional file 3: Movie simulating the flow when aosc = 0.1. This
film was made from hemodynamic data obtained in our simulations. This
model simulates the flow in large arteries (1 cm radius), where the
deformation is similar to that found in large arteries AOSC= 0.1: normal
case.
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