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Abstract

In this paper, we introduce fractional-order into a model of HIV-1 infection of CD4+ T cells. We study the effect of
the changing the average number of viral particles N with different sets of initial conditions on the dynamics of
the presented model. Generalized Euler method (GEM) will be used to find a numerical solution of the HIV-1
infection fractional order model.

1. Introduction
At the present time there are several countries, particu-
larly in Africa, with up to 35% of their populations
between the ages of 15 and 50 years infected by human
immunodeficiency virus (HIV) [1]. Throughout the
world, already over 16 million deaths have been caused
by this virus. HIV is a retrovirus that targets the CD4+ T
lymphocytes, which are the most abundant white blood
cells of the immune system. Although HIV infects other
cells also, it wreaks the most havoc on the CD4+ T cells
by causing their decline and destruction, thus decreasing
the resistance of the immune system [2,3]. Mathematical
models have been proven valuable in understanding the
dynamics of HIV infection [4-6]. In 1989, Perelson devel-
oped a simple model for the primary infection with HIV
[7]. This model has been important in the field of mathe-
matical modeling of HIV infection, and many other mod-
els have been proposed, which take this model as their
inspiration. Perelson et al. extended the model in 1993
and discussed some of the model’s behavior [8]. They
defined the model by considering four categories: unin-
fected CD4+ T cells, latently infected CD4+ T cells, pro-
ductively infected CD4+ T cells and virus population.
We will consider some models for HIV-1 population

dynamics below [9]. Here there are two components: x,
the number of uninfected CD4+ T -cells and y, the
number of infected such cells. Then the following two
equations describe the evolution of the system:

dx
dt

= s − μx − βxy

dy
dt

= βxy − νy

where all parameters and variables are non-negative. s
is the assumed constant rate of production of CD4+ T
-cells, μ is their per capita death rate, bxy is the rate of
infection of CD4+ T -cells by virus, and vy is the rate of
disappearance of infected cells. The viral variable has
been omitted for simplicity as it is here assumed to be
linearly related to y. A more complete model of human
immunodeficiency virus type 1 (HIV-1) dynamics con-
siders in addition to the uninfected and infected CD4+

T -cells, x and y respectively, the number of virions in
plasma, z. The following three equations are:

dx
dt

= s − μx − βxz,

dy
dt

= βxz − νy,

dz
dt

= cy − γ z − βxz.

The third equation in the last mentioned reference
does not contain the term -bxz to account for the fact
that when a virus infects a CD4+ T -cell, z decreases at
the same time as x decreases. Without this we have:
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dx
dt

= s − μx − βxz,

dy
dt

= βxz − νy,

dz
dt

= cy − γ z.

Rong et al. further modified the model by incorporat-
ing anti-retroviral effects to study the evolution of drug
resistance [10]. They considered three classes of CD4+

T cells: uninfected cells, infected cells in eclipse phase
and productively infected cells. The model depends on
the observation that for a virus, when it enters a resting
CD4+ T cell, viral RNA may not be completely reverse
transcribed into DNA. In [11], the authors modified the
ODE model proposed by Culshaw and Ruan into a sys-
tem of fractional-order [12]. They showed that the
model established in this paper possesses non-negative
solutions, as desired in any population dynamics. They
obtained a restriction on the number of viral particles
released per infectious cell, in order for infection to be
sustained. Following Rong et al., we assume here that a
fraction of infected CD4+ T-cells return to the unin-
fected class. In view of this, the following model is pro-
posed:

dT
dt

= s − KVT − dT + bI,

dI
dt

= KVT − (b + δ)I,

dV
dt

= NδI − cV.

(1)

With initial conditions

T (0) = T0, I (0) = I0,V (0) = V0.

In this model, T, I and V denote the concentration of
uninfected CD4+ T cells, infected CD4+ T cells, and free
HIV virus particles in the blood, respectively. δ repre-
sents death rate of infected T cells and includes the pos-
sibility of death by bursting of infected T cells, hence δ
≥ d. The parameter b is the rate at which infected cells
return to uninfected class while c is death rate of virus
and N is the average number of viral particles produced
by an infected cell. The rest of the paper is organized as
follows. Section 2 gives an idea about fractional calculus.
In section 3, we introduce fractional-order into the
model that describes HIV infection of CD4+ T cells.
Section 4 gives an idea about the generalized Taylor’s
formula while section 5 presents the idea of generalized
Euler’s method for solving FODEs. Section 6 is devoted
for the numerical results.

2. Fractional calculus
Fractional calculus has been extensively applied in many
fields [13,14]. Many mathematicians and applied
researchers have tried to model real processes using the
fractional calculus. Jesus, Machado and Cunha analyzed
the fractional order dynamics in botanical electrical
impedances [15,16]. Petrovic, Spasic and Atanackovic
developed a fractional-order mathematical model of a
human root dentin. In biology, it has been deduced that
the membranes of cells of biological organism have frac-
tional-order electrical conductance [17] and then are
classified in groups of non-integer order models. Frac-
tional derivatives embody essential features of cell rheo-
logical behavior and have enjoyed greatest success in the
field of rheology [18]. Fractional order ordinary differen-
tial equations are naturally related to systems with
memory which exists in most biological systems. Also,
they are closely related to fractals, which are abundant
in biological systems. Hence, we propose a system of
FODE for modeling HIV. We first give the definition of
fractional-order integration and fractional-order differ-
entiation [19]. There are several approaches to the gen-
eralization of the notion of differentiation to fractional
orders e.g. Riemann-Liouville, Caputo and Generalized
Functions approach. For the concept of fractional deri-
vative, we will adopt Caputo’s definition, which is a
modification of the Riemann-Liouville definition and has
the advantage of dealing properly with initial value
problems.
Definition 1. The fractional integral of order a > 0 of

a function f: R+® R is given by

Jαf (x) =
1

� (α)

x
∫
0
(x − t)α−1f (t) dt, (2)

Where J0f(x) = f(x), a > 0, x > 0.
Definition 2. Riemann-Liouville and Caputo fractional

derivatives of order a where a Î (n-1, n) of a continu-
ous function f: R+® R is given respectively by

Dαf (x) = Dm (
Jm−α f (x)

)
, (3)

Dα
∗ f (x) = Jm−α

(
Dmf (x)

)
, (4)

Where m-1 <a ≤ m, m Î N.
The reason of using fractional order differential equa-

tions is that they are naturally related to systems with
memory which exists in most biological systems. Also
they are closely related to fractals which are abundant in
biological systems. The definition of fractional derivative
involves an integration which is non local operator (as it
is defined on an interval) so fractional derivative is a
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non local operator. In other word, calculating time frac-
tional derivative of a function f (t) at some time t = t1
requires all the previous history, i.e. all f (t) from t = 0
to t = t1 The results derived of the fractional systems
are of a more general nature. However, the fundamental
solutions of these equations still exhibit useful scaling
properties that make them attractive for applications.
We would like to put your attention that time fractional
derivatives change also the solutions we usually get in
standard system. The concept of fractional or non-inte-
ger order derivation and integration can be traced back
to the genesis of integer order calculus itself. Most of
the mathematical theory applicable to the study of non-
integer order calculus was developed through the end of
19th century. However it is in the past hundred years
that the most intriguing leaps in engineering and scien-
tific application have been found. The calculation tech-
nique has in some cases had to change to meet the
requirement of physical reality. The derivatives are
understood in the Caputo sense. The general response
expression contains a parameter describing the order of
the fractional derivative that can be varied to obtain var-
ious responses. One of the basic reasons of using frac-
tional order differential equations is that “Fractional
order differential equations are, at least, as stable as
their integer order counterpart.”

3. Fractional-order model derivation
Now we introduce fractional-order into the model (1) of
HIV infection of the CD4+ T -cells. The new system is
described by the following set of FODEs of order a1, a1,
a3 > 0:

Dα1 (T) = s − KVT − dT + bI,

Dα2 (I) = KVT − (b + δ)I,

Dα3 (V) = NδI − cV.

(5)

4. Generalized Taylor’s formula
In this section we introduce a generalization of Taylor’s
formula that involves Caputo fractional derivatives. This
generalization is presented in [20].
Suppose that

Dkα
∗ f (x) ∈ C(0, a], for k = 0, 1, ...,n + 1, where 0 <a ≤

1. Then we have

f (x) =
n∑
i=0

xiα

� (iα + 1)

(
Diα

∗
)
(0+) +

(
D(n+1)α

∗ f
)

(ξ)

� ((n + 1) α + 1)
x(n+1)α (6)

With 0 ≤ ξ ≤ x, ∀ x Î (0, a].
In case of a = 1, the generalized Taylor’s formula (6)

reduces to the classical Taylor’s formula.

5. Generalized Euler method (GEM)
Most nonlinear fractional differential equations do not
have analytic solutions, so approximations and numeri-
cal techniques must be used [21]. The decomposition
method (ADM) and the variational iteration method
(VIM) are relatively new approaches to provide an ana-
lytical approximate solution to linear and nonlinear pro-
blems, and they are particularly valuable as tools for
scientists and applied mathematicians, because they pro-
vide immediate and visible symbolic terms of analytic
solutions, as well as numerical approximate solutions to
both linear and nonlinear differential equations. In
recent years, the application of the ADM, VIM, in linear
and nonlinear problems has been developed. On the
other hand, these methods are effective for small time, i.
e. t < < 1, however the standard homotopy perturbation
method (HPM) cannot solve the problem for larger time
and in fact the solution of the chaotic system using
HPM is an open problem. Nevertheless by chance, there
are cases at which these methods give good approxima-
tion for a large range of time (t). A few numerical meth-
ods for fractional differential equations have been
presented in the literature. However many of these
methods are used for very specific types of differential
equations, often just linear equations or even smaller
classes. Odibat and Momani derived the generalized
Euler’s method that we have developed for the numeri-
cal solution of initial value problems with Caputo deri-
vatives [22]. The method is a generalization of the
classical Euler’s method. Consider the initial value pro-
blem

Dα
∗y (t) = f

(
t, y (t)

)
, y (0) = y0, (7)

For 0 <a ≤ 1, t > 0.
Let [0, a] be the interval over which we want to find

the solution of the problem (7). In actuality, we will not
find a function y(t) that satisfies the initial value pro-
blem (7). Instead, a set of points {tj, y(tj)} is generated,
and the points are used for our approximation. For con-
venience we subdivide the interval [0, a] into k subinter-
vals [tj, tj + 1] of equal width h = a/k by using the nodes
tj = jh, for j = 0, 1,..., k. Assume that

y (t) ,Dα
∗y (t) , and D2α

∗ y (t) are continuous on [0, a] and
use the generalized Taylor’s formula (5) to expand y(t)
about t = t0 = 0. For each value t there is a value c1 so
that

y (t) = y (t0) + (Dα
∗y (t)) (t0)

tα

� (α + 1)
+ (D2α

∗ y (t)) (c1)
t2α

� (2α + 1)
(8)

When (Dα
∗y(t))(t0) = f (t0, y(t0)) and h = t1 are substi-

tuted into equation (8), the result is an expression for y
(t1):
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y (t1) = y (t0) + f
(
t0, y (t0)

) hα

� (α + 1)
+ (D2α

∗ y (t)) (c1)
h2α

� (2α + 1)

If the step size h is chosen small enough, then we may
neglect the second-order term (involving h2a) and get

y (t1) = y (t0) +
hα

� (α + 1)
f (t0, y(t0))

The process is repeated and generates a sequence of
points that approximates the solution y(t). The general
formula for generalized Euler’s method (GEM) when tj
+1 = tj + h is

y
(
tj+1

)
= y

(
tj
)
+

hα

� (α + 1)
f
(
tj, y

(
tj
))

(9)

for j = 0, 1,...,k-1. It is clear that if a = 1, then the
generalized Euler’s method (9) reduces to the classical
Euler’s method.

6. Numerical results
We will solve the system (5) by using (GEM). Consider
that a1 = a2 = a3 = a. We used the following data set: s
= 10, b = 0.2, k = 0.000024, d = 0.01, δ = 0.16, c = 3.4, N
varies. For this set of data R0 = 3.13 when N = 1000 (Fig-
ures 1, 2, 3, 4, 5, 6) and R0 = 5.01 when N = 1600 (Figures
7, 8, 9, 10, 11, 12). The initial conditions in the first case
study are T(0) = 1000, I(0) = 0, V(0) = 0.001 while in the

Figure 1 The concentration of the uninfected CD4+ T cells at N
= 1000 in the 1st case. Gray solid line (a = 1), Dotted line (a =
0.99), Black solid line (a = 0.95).

Figure 2 The concentration of the infected CD4+ T cells at N =
1000 in the 1st case. Gray solid line (a = 1), Dotted line (a = 0.99),
Black solid line (a = 0.95).

Figure 3 The concentration of the free HIV virus particles at N
= 1000 in the 1st case. Gray solid line (a = 1), Dotted line (a =
0.99), Black solid line (a = 0.95).

Figure 4 The concentration of the uninfected CD4+ T at N =
1000 in the 2nd case. Gray solid line (a = 1), Dotted line (a =
0.99), Black solid line (a = 0.95).
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second case are T(0) = 1000, I(0) = 10, V(0) = 10. In the
two cases the system goes to infected steady state.

7. Conclusion
In this paper we employed the Generalized Euler
method (GEM) as a reasonable basis for studying the
solution of human T-cell lymphotropic virus (HIV-I)
infection of CD4+ T-cells. We modified the integer-
order model (1) into a fractional-order model (5). From
the obtained results in the presented figures, it is clear
that in the primary stage of the infection with the (HIV)
virus, a dramatically decrease in the level of the CD4+

T-cells occurs because of the death of such infected
cells. On the other hand, the number of the free HIV
virus particles and the number of susceptible CD4+ T

cells increase. This assumes that the growth of healthy
T-cells slows down during the course of HIV infection.
We have to give an attention to the parameter b which
is called the reverting rate of infected cells to uninfected
class due to non-completion of reverse transcription.
Further, since only small fraction of infected cells will
revert back due to incompletion of reverse transcription,
we expect the reverting rate b to be small. The basic
reproduction number of the presented model (5) is
given in as:

R0 =
NδKs

cd(b + δ)

Figure 5 The concentration of the infected CD4+ T at N = 1000
in the 2nd case. Gray solid line (a = 1), Dotted line (a = 0.99),
Black solid line (a = 0.95).

Figure 6 The concentration of the free HIV virus particles at N
= 1000 in the 2nd case. Gray solid line (a = 1), Dotted line (a =
0.99), Black solid line (a = 0.95).

Figure 7 The concentration of the infected CD4+ T cells at N =
1600 in the 1st case. Gray solid line (a = 1), Dotted line (a = 0.99),
Black solid line (a = 0.95).

Figure 8 The concentration of the infected CD4+ T cells at N =
1600 in the 1st case. Gray solid line (a = 1), Dotted line (a = 0.99),
Black solid line (a = 0.95).
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It represents the average number of secondary infec-
tion caused by a single infected T cell in an entirely
susceptible T cell population, throughout its infectious
period. For system (5), if the basic reproduction num-
ber R0 ≤ 1, the the virus is cleared and no HIV infec-
tion persists. If R0 > 1, the HIV infection persists in
the T-cell population. In the two presented cases, R0 =
3.13 when N = 1000, (see Figures 1, 2, 3, 4, 5, 6) and
R0 = 5.01 when N = 1600 (see Figures 7, 8, 9, 10, 11,
12), so the system goes to infected steady state. It is
clear from the definition of R0 that R0 decreases as the
reverting rate, b of infected cells increases, hence R0

can be low for a high parametric value of b. Increasing
the N value will decrease the numbers of uninfected

CD4+ T-cells and increase the number of free virus
substantially, but does not change the stability of the
steady state. The concentration of susceptible CD4+ T
cells T(t), infected CD4+ T cells I(t), and free HIV
virus particles V(t) in the blood have been obtained,
therefore when a ® 1 the solution of the fractional
model (5) Ta (t), Ia(t), Va(t), reduce to the standard
solution T(t), I(t), V(t). Finally, the recent appearance
of fractional differential equations as models in some
fields of applied mathematics makes it necessary to
investigate methods of solution for such equations
(analytical and numerical) and we hope that this work
is a step in this direction.

Figure 9 The concentration of the free HIV virus particles at N
= 1600 in the 1st case. Gray solid line (a = 1), Dotted line (a =
0.99), Black solid line (a = 0.95).

Figure 10 The concentration of the uninfected CD4+ T cells at
N = 1600 in the 2nd case. Gray solid line (a = 1), Dotted line (a =
0.99), Black solid line (a = 0.95).

Figure 11 The concentration of the infected CD4+ T cells at N
= 1600 in the 2nd case. Gray solid line (a = 1), Dotted line (a =
0.99), Black solid line (a = 0.95).

Figure 12 The concentration of the free HIV virus particles at N
= 1600 in the 2nd case. Gray solid line (a = 1), Dotted line (a =
0.99), Black solid line (a = 0.95).
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