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NONLINEAR BIOMEDICAL
PHYSICS

New method for analysis of nonstationary signals

Robert A Stepien

Abstract

wide group of signals, including biosignals.

presented.

recorded in persons with epilepsy.

Background: Analysis of signals by means of symbolic methods consists in calculating a measure of signal
complexity, for example informational entropy or Lempel-Ziv algorithmic complexity. For construction of these
entropic measures one uses distributions of symbols representing the analyzed signal.

Results: We introduce a new signal characteristic named sequential spectrum that is suitable for analysis of the

The paper contains a brief review of analyses of artificial signals showing features similar to those of biosignals. An
example of using sequential spectrum for analyzing EEG signals registered during different stages of sleep is also

Conclusions: Sequential spectrum is an effective tool for general description of nonstationary signals and it its
advantage over Fourier spectrum. Sequential spectrum enables assessment of pathological changes in EEG-signals

Introduction

There are many ways of using symbolic dynamics for
time series analysis and all of them need coding i.e. con-
versing of the analyzed time series into symbols series.
The differences between different symbolic methods are
in coding procedure and/or in calculated complexity
measure, such as entropy [1-3] or Lempel-Ziv complex-
ity [4,5]. These characteristics describe dynamics of the
process generating the analyzed signal. Complexity mea-
sures are usually scalars containing only general infor-
mation about complexity of a process generating the
analyzed signal. The comparison of processes about the
similar dynamic complexity is ineffective, it is a major
inconvenience of these measures.

We introduce a new symbolic measure that is similar
to frequency characteristics and we call it a sequential
spectrum (seq-spectrum) in analogy to frequency spec-
trum. Sequential spectrum like Lempel-Ziv complexity,
belongs to methods applying short ordered sequences of
symbols (tuples). The important difference is that in the
case of seq-spectrum it is the values of first derivative of
the signal that is encoded. Moreover, in seq-spectrum
only mono-sequences i.e. tuples containing only one kind
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of symbol are considered and lengths of mono-
sequences correspond to frequencies.

However, in spite of analogies to frequency spectrum,
sequential spectrum is not a transformation of the signal
to the frequency space. It does not exist a reverse
procedure enabling reconstruction of the signal from its
seq-spectrum.

Methods
Figure 1 shows the algorithm for calculation of
seq-spectrum. In the first step the time series is encoded
into a symbols series; in the second step, it is counted
cardinality of mono-sequences are counted; in the third
step binary occupancy is calculated i.e. relative contri-
bution of the mono-sequences of length N into the
analyzed symbols series.

For a signal represented by the time series x(i) we
calculate the first range differences and represent them
by the symbols from the two-elements set {0,1}:

§(i) = { Tif [x(i+1)—x®] >0 is1.(I—1) ()

0if x({A+1)—x(@)] <0’

As a result of signal’s encoding we obtain binary sym-
bol series, P, for example [1,1,1,0,0,0,1,1,1,1,0,0,1,1,1,0,0,
0,0,1,1,1,1,1,1,0,0,0,0,0,0,0,0].

Next, tuples [Nxs], i.e. mono-sequences of length N con-
sisting only one type of symbol (s=0 or s=1), are counted
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One epoch of time series x(i)

ﬁ Coding derlvatlve to astring of 1 x; >0
symbols § =
0 x<0

P=[1,1,1,0,0,0,1,,1,L,0,0,1,1,1,0,0,0,0,1,1,1,1,1,1,0,0,0,0,0,0,0,0]
Number of the symbols in the string: |P| =33

@ Searching for mono-sequences

{011, [0.0,0] [1,LA1] [00] [1,L,1]10,0,0.0] [1,1,1,1,1,1] 000,0.0,0.0,01} =
{3xL],[3x0,[4x1], [ 230, [3x1], [4x0,[6x1],[8x0]}

ﬂ Counting cardinality of mono-sequences in the epoch

L{2x0]=1, L3x0]=1, L[3x1]=2, Li4x0f=L, Lidx1=1, Ligst]=1, Li$x0}=1

Caleulating hinary occupancy:
Mono-sequence’s length - Cardinality / Number of the symbols in string

O((3x1])=3-LI3x1/33, O(2x0])=2-L{2x0)33, O(3x0])=3-L{350)33,
O((4x])=4-L[4x1}/33, O(4x0])=4-L[4x0)33, O(f6x1])=6-L{6x1)33,
O((8x0])=8-L[8x1)33

Figure 1 Calculation of sequential spectrum - flow diagram.
.
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in series P. As the result we obtain the cardinality, L[Nxs],
and we repeat counting procedure for all possible values
of N (limited by the length of symbols series P), so obtain-
ing the distribution of cardinalities. Knowing cardinalities
L[Nxs] we calculate binary occupancy, O[Nxs], for mono-
sequences, [Nxs], in the binary symbol series P,

L[Nxs]-N
O [Nxs] = I

(N=1,..I), 2)

where I is the length of symbol series P, i.e. the total
number of symbols in this series. In other words, binary
occupancy characterizes distribution of monotonic inter-
vals of length N in the analyzed time series - decreasing
(s= 0) or increasing (s= 1) intervals.

Presented method has some common features with a
special kind of spectral analysis called the interval analy-
sis [9]. There exists relationship between the spectral
frequency f and the length, N, of the mono-sequence
[Nxs] (Figure 2). If the sampling frequency of signal is f;
and N is the length of a mono-sequence then the related
frequency is:

_k
=N 3

Similarly to Fourier spectrum, a width of seq-spec-
trum depends on the sampling frequency and it is
usually wider for higher sampling frequencies. How-
ever, with increasing sampling frequency seq-spectrum
extends towards longer sequences i.e. towards lower
frequencies unlike Fourier spectrum that extends
toward higher frequencies i.e. shorter wavelengths
(shorter sequences). But it is not always the case,
because when sampling frequency increases additional
local maxima and minima appear in the time series
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Figure 2 Binary encoding of three signals with characteristic
frequencies equal 4f, 2f, f, respectively. Mono-sequence
composed of zeros corresponds to the falling hillside of the wave,
that is in the case of a sinusoidal signal is equivalent to a half of
wave for given frequency.
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representing the analyzed signal so mono-sequences
might become shorter.

The small resolution of seq-spectrum in the range of
short mono-sequences is a consequence of the fact that
the length N is a positive integer number.

The shape of seq-spectrum and its width contains
information about general properties of the analyzed
signal.

To compare the seq-spectrum appointed for the
state A with the seq-spectrum for the state B we define
relative seq-spectrum:

Oag ([Nxs]) = Oa ([Nxs]) — Op ([Nxs]) (4)

Results

Before using seq-spectrum for analysis of biosignals, the
features of seq-spectrum were tested on well defined
artificial signals. Knowing the results of analysis of artifi-
cial signals with different characteristics we could start
to analyze complex natural signal like EEG.

Analysis of artificial signals

We calculated seq-spectra on the subset of surrogate sig-
nals from Physionet Bank [7]. This collection contains spe-
cial surrogate signals showing features similar to some real
biosignals. There are stationary noise signals with different
correlations, signals with added trends, and non-stationary
signals [8,9]. Our calculations were performed for the set
of stationary noise signals, using both kind of mono-
sequences, [Nx0] and [Nx1] (Figure 3).

The plots on the Figure 3 show that the shape and
width of seq-spectrum of stationary noise signal depend
on the fluctuation exponent, a, that is on level of corre-
lation in the signal - stronger correlation leads to wider
seq-spectrum. Seq-spectrums for both kinds of mono-
sequences [Nx0] and [Nx1] are identical for the same
fluctuation exponent a.

Next, we tested seq-spectrum on linear chirp signals
(Eq.5) which is the example of signals with frequency
changing regularly with time. Such a behavior is
observed in some biosignals. For our simulation of chirp
signals we used formula:

£(t) = sin(27 (at + b)t), ®)

where a = 1 and b = 0.

The seq-spectra obtained for chirp using mono-
sequences [Nx0] and [Nx1] are different from each
other (Figure 4). It is a consequence of shortening of
the period of the signal. So, for the chirp based on the
sinus function, each negative arm is always shorter
than the preceding positive arm i.e. the mono-
sequences consisting of the symbols 0 are shorter than
the preceding mono-sequences consisting of the
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Figure 3 The seq-spectra for stationary noise with different fluctuations exponent a: 0.1, 0.2 (anticorrelated), 0.5 (Gaussian noise), 0.8,
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symbol 1; it is opposite for the chirp based on the
cosine function

The plot of seq-spectrum for chirp (Figure 4) shows
linear relation between lengths of mono-sequences and
binary occupancy. This result illustrates an advantage of
seq-spectrum over classical Fourier spectrum because
Fourier spectrum calculated for chirp does not show lin-
ear relation arising from (Eq.5).

Figure 5. shows seq-spectra for different type of noise.
among them for Gaussian noise (o = 0.5) that are
usually used as models for contamination of real signals
and biosignals. So, we checked (Figure 5), what is the
influence of added Gaussian noise on the seq-spectrum
of the simple periodic signal being a superposition of
five harmonics.

We obtained identical seq-spectra for the mono-
sequences [Nx0] and [Nx1] when comparing the results
for signal with the same level of added noise. The added
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Figure 4 The seq-spectra for the chirp signal calculated with
time step At = 0,001 with symbols “0” and “1” respectively.

noise makes seq-spectrum wider then seq-spectrum of
the signal without noise. Pattern of changes of binary
occupancy in seq-spectrum is regular - the values of
occupancy either increase or decrease with increasing
noise amplitude for the same length of mono-sequences.

Another feature of biosignals is their nonstationarity.
Nonstationary signals are usually analyzed using moving
windows technique. Seq-spectrum is more useful than
Fourier spectrum for nonstationary signals.

Sequential spectrum was verified on a signal crafted
from a periodic signal from which sections of random
length had been removed. The initial periodic signal
consisted of five harmonics of equal amplitudes with
frequencies: 5, 8, 9, 12 and 13 Hz respectively (Rys.6a).
Figure 6b. shows Fourier spectrum of initial signal while
Figure 6¢. shows its seq-spectrogram. The periodic
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Figure 5 An example of seq-spectrum of a multi-periodic
signal and the signal contaminated by noises with different
signal-to-noise ratio.
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Figure 6 Analysis of the periodic signal with removed sections of random length:a) the primary multi-periodic signal generated as a sum
of five harmonic signals, b) its frequency spectrum, c) seg-spectrogram of this signal d) nonstationary signal obtained as result of the removal of
sections of random length from primary multi-periodic signal, e) the frequency spectrum of this nonstationary signal, f) seg-spectrogram of this

nonstationary signal.

signal was divided into fragments of random length.
Removing of each second section produces the signal
shown on Figure 6d. Its Fourier spectrum (Figure 6e) is
so strongly changed that even the identification of five
harmonics from which the primary signal was composed
becomes impossible. Seq-spectrogram for nonstationary
signal (Figure 6f) neither contains characteristic of the
primary multi-periodic signal. However, small contribu-
tion of short sequences shows that the signal does not
contain noise and that it is not random.

As opposed to the Fourier spectrum, the seq-spectrum
(Figure 7) of the crafted nonstationary signal (Figure 6d)
can perceive the peaks occurring in the seq-spectrum of
primary periodic signal.

The signals produced by complex nonlinear biological
systems are usually nonstationary and processes generat-
ing these signals can be described by deterministic
chaos. Our last example concerns analysis of artificial
signal generated by chaotic system with logistic map
dynamics

Xne1 = wxn (1 — xn) (6)

In the case of mono-sequences composed of symbol 0,
only two mono-sequences of lengths, N = 1 and N = 2,

contribute to the seq-spectrum (Figure 8a). In the case
of mono-sequences composed of symbol 1 the
seq-spectrum is much wider, however dominating con-
tributions are of mono-sequences of lengths N = 1 and
N = 2 (Figure 8b). So, sequential spectrum of logistic
map depends on the symbol of which the mono-
sequences are composed.

Seg-spectrums of real biosignals

Seq-spectrum can be useful for sleep staging - the values
of binary occupancy as represented by seq-spectrum
changes depending on the stage of sleep. To demon-
strate this we used hypnograms analyzed by medical
doctors and we traced the seq-spectra in different sleep
stages as marked on these medical hypnograms.

A distinct tendency is noticeable (Figure 9), sleep
stages S2, S3, and S4 show lower values of binary
occupancy in the range of short mono-sequences. The
tendency is opposite in deeper stages of sleep, i.e.
higher values of binary occupancies start correspond to
mono-sequences of the length exceeding 6 samples.
Binary occupancy for the stages 3 and 4 is clearly
lower than for remaining stages of sleep when mono-
sequences are shorter than 6. For stage S2 binary
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Figure 7 The seq-spectra of the multi-periodic signal and the nonstationary signal obtained as result of the removal of sections of

70

occupancy for mono-sequences shorter than 6 is lower
than for stage S1, REM sleep and for vigilance, W. For
longer mono-sequences the relations are opposite.
Values of binary occupancy for REM are between
those for S1 and S2.

In order to highlight the difference between sleep
stages we apply the relative seq-spectrum (Eq.4) Ogw
([Nx0]), i.e. we calculate the differences between pairs of
seq-spectrum values in all sleep stages and the

respective value for the chosen stage. Figure 10. shows
relative seq-spectrum calculated relatively to the state of
vigilance; the straight horizontal line is the seq-spectrum
of the reference state. In the case of the slow-wave sleep
(stages 3 and 4) this relative spectrum is negative for
mono-sequencecs of the length from 1 to 9, while for
longer mono-sequences the relative spectrum is positive.
For stage S2 the relative spectrum is similar to those for
stages 3 and 4.
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Figure 8 The seq-spectra of chaotic time series obtained as the evolution of logistic map with symbol “0” and “1” respectively.
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Figure 9 The example of sequential spectra for all sleep stages
of a healthy subject.

In most cases in the spectrum it is also possible to
distinguish in the relative seq-spectrum two ranges but
for REM stage the values are either only positive or only
negative. However, it is not the rule - the curve of the
relative spectrum for REM is sometimes similar to that
for stage S1.

For stage S1 situation is more complicated. It is possi-
ble to distinguish three or four ranges in which the dif-
ference of binary occupancies between stage S1 and the
state of vigilance is positive or negative. Border of these
ranges are not usually sharp - for short mono-sequences
(for lengths 1, 2) the value of the relative cover is posi-
tive. The range in which the values are negative usually

0,04 ———————————— 71—

Oy ([Nx0])

N
Figure 10 Relative seq-spectra for all sleep stages calculated
relatively to state of vigilance.
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comes after this range (within the limits from 3-4 to 9).
The next range contains again positive values.

The question arises whether universal ranges of the
values of the binary occupancy do exist. This would
make it a tool for automatic sleep staging. But it is
doubtful since EEG signals show strong individual
diversification.

Seq-spectra calculated for EEG-signals from polysom-
nographic recordings make it possible to distinguish
normal sleep from certain sorts of sleep disorders.
In pathological sleep short mono-sequences shows
greater contribution than in the case of normal sleep
(Figure 11). Comparing the seq-spectra of insomniacs
with the seq-spectra of healthy subjects calculated in
every sleep stage separately (Figure 9), we see that pat-
tern of pathological recording is similar to patterns
obtained for stages S1 and REM. In the case of normal
sleep activity seq-spectrum shows pattern similar to pat-
terns for stages S3 and S4.

Another example concerns using sequential spectrum
for analysis of EEG-signals in epilepsy. Comparison of
seq-spectra of EEG-signals of persons suffering from
epilepsy and those of healthy persons shows that
seq-spectra in pathological cases are much broader than
those of healthy persons. All mono-sequences longer
than 7 have a bigger contribution to seq-spectra in
pathological cases than that for healthy persons
(Figure 12). However, values of binary occupancies for
mono-sequence of the length from 1 to 4, are greater
for the norms than in pathological cases.

Comparing the seq-spectra O([Nx0]) and O([Nx1], we
see that for the normal activity choice of the symbol is
unimportant - seq-spectra are identical. It is interesting

0,12 T T T T T T T T T T
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0,08 | ! ]
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001
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Figure 11 The examples of seq-spectra calculated for EEG-
signals of a healthy person and of an insomniac. The frequency
of the sampling of the signal was 128Hz.
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that for strong seizures differences between seq-spectra
are not significant, while for the case of weak seizures
they really are.

Discussion and Conclusions

Sequential spectrum is an effective tool for general
description of nonstationary signals. The results of ana-
lysis of EEG-signals during sleep and epilepsy show that
sequential spectrum is useful characteristic for analysis
of biosignals. The spectral analysis we can widen on the
analysis time-sequential (seq-spectrogram) after the
fashion time-frequency methods.

Sequential spectrum can also be used to categorize
processes generating signals. Between seq-spectra O
([Nx0]) and O([Nx1]) of stationary random signals high
congruity exists. It decreases when autocorrelation of
the signal grows or the signal is non-stationary, or chao-
tic. This requires further research because asymmetry
between spectra O([Nx0]) and O([Nx1]) appears also for
signals in which epochs appear about the constant
amplitude. It results from the way of coding the signal
(Eq.1); when the signal is constant there is an assigned
symbol “1”.
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